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Summary

This report provides a comprehensive summary of the research work performed over the entire

duration of the co-operative research agreement NCC-1-225 between NASA Langley Research

Center and Kansas State University. The cooperative agreement which was originally for the

duration the three years was extended by another year through no-cost extension in order to

accomplish the goals of the project.

A detailed final report is enclosed in the form of a thesis. This thesis summarizes the

findings and also suggests possible future directions for the continuation of the research in the

area of GPC and NGPC. The enclosed thesis is the outcome of the research conducted under

cooperative agreement NCC-1225.
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ABSTRACT

Theresearchwork presentedin this thesisaddressesthe problemof robustcontrol

of uncertain linear and nonlinear systemsusing Neural network-basedGeneralized

PredictiveControl (NGPC) methodology.A brief overviewof predictivecontrolandits

comparisonwith Linear Quadratic(LQ) control is given to emphasizeadvantagesand

drawbacksof predictive control methods.It is shown that the GeneralizedPredictive

Control (GPC) methodologyovercomesthe drawbacksassociatedwith traditionalLQ

controlaswell asconventionalpredictivecontrolmethods.It is shownthatin spiteof the

model-basednature of GPC it has good robustnesspropertiesbeing specialcaseof

recedinghorizon control. The conditions for choosingtuning parametersfor GPC to

ensureclosed-loopstability are derived.A neural network-based GPC architecture is

proposed foi" -the control of linear and nonlinear uncertain systems. A methodology to

account for parametric uncertainty in the system is proposed using on-line training

capability of multi-layer neural network. Several simulation examples and results from

real-time experiments are given to demonstrate the effectiveness of the proposed

methodology.
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CHAPTER 1 Introduction

1.1 Preface

One way to classify controllers is model-based and model-independent

controllers. Model-based controllers rely on the explicit plant model information to

compute the control signal whereas model-independent controllers do not depend on

plant model to compute the control signal. Model-independent controllers can provide

inherent robustness to modeling errors and parametric perturbations as they do not

depend on the plant model. Their performance, however, can get greatly affected by such

perturbations. Model-based controllers, on the other hand, are sensitive to modeling as

well as parametric uncertainties; however, they can deliver better performance with

proper tuning. Predictive controllers belong to a class of model-based controllers and

have been proved to be very effective for control of dynamic systems. Traditionally, in

past, model-based controllers have suffered from lack of proof of stability and

performance robustness. Their recent popularity in control community, however, is due to

significant advances in their theoretical and experimental research on stability and

performance robustness. The work presented in this thesis focuses on the use of

Generalized Predictive Control (GPC) methods, which use neural network-based plant

model for real-time control of dynamic systems. GPC belongs to a special class of

predictive control method, namely, Receding Horizon Control (RHC). GPC overcomes

the drawbacks of traditional model-based controllers by providing guaranteed closed-

loop stability with acceptable level of performance. The research work reported herein

exploits the nonlinear mapping and on-line learning capabilities of neural network and



stability propertiesof GPCto achieveeffective real-time control of unstableand non-

minimum phasedynamicsystems.Since theoretical framework of GPC parallelsto a

largeextent to LinearQuadratic(LQ) framework,a comparativeassessmentis presented

betweenRHC andLQ methodologieswhereverappropriate.

1.2 Organization of thesis

The organization of this thesis is as follows:

In the second chapter, basic framework of GPC is presented along with a brief

introduction of GPC and some remarks on their comparison with LQ controllers. It is

shown that GPC controllers belong to a class of model-based controllers, namely,

Receding Horizon Control (RHC) and that GPC is essentially a dynamic version of RHC.

Since RHC paradigm parallels very close to an LQ paradigm, a comparison between LQ

and RHC controllers is given to point out the differences between the two. It is shown

that RHC has numerous advantages over its LQ counterparts. It is also shown that the

disadvantages arising owing to model-based control strategies are minimized by the use

of receding horizon control. GPC, being special case of RHC, inherits the basic

characteristics of RHC and offers additional benefits due to it own architecture. The basic

derivation of GPC control law for LTI system with known plant model is also given.

The third chapter gives the review of neural networks and presents some of their

potential applications in the control system design. In particular, it is shown that how

neural networks can be used as estimators or predictors in the control system

applications. In GPC framework, neural networks find their use for system modeling. It is

shown that the tapped-delay architecture of the neural networks allows them to model



d?namicsystems.A procedureto train neural network as dynamic plant estimator is also

given.

In Chapter 4, a methodology to integrate neural network into GPC framework to

yield Neural network-based GPC (NGPC) architecture is given. The controller block

diagram for NGPC architecture is presented. The cost function minimization algorithm

used in NGPC framework is described in detail. The methodology to use neural network

for modeling and prediction in the control of linear and nonlinear uncertain systems is

given.

Chapter 5 focuses on numerical simulations and real-time experiments. The

results presented in this chapter validate NGPC algorithm and analytical development

given in the preceding chapters. Numerous simulation and experimental results axe

presented in this chapter, which support the proposed methodology for the control of

uncertain systems.

Finally, Chapter 6 gives some concluding remarks and lists possible directions for

future research.



CItAPTER 2 Generalized Predictive Control

This chapter will review background material pertinent to the research work

presented in this thesis and lay theoretical foundation for ensuing chapters. The basics of

predictive control are first revisited and their strengths and weaknesses are reviewed in

comparison with traditional LQ control methods. The basic principle RHC is presented

and the concept of GPC is introduced. Finally, modeling of plant and disturbances is

discussed followed by the derivation of GPC control law.

2.1 Predictive controllers revisited

Predictive controllers belong to a class of model-based controllers. A typical

schematic of model-based controllers is shown in Fig 2.1. As the name suggests,

predictive controllers are based on the control methodology, which uses prediction of the

future outputs of the system to compute the control signal. The future outputs are

predicted using the best possible model available to the designer and a known sequence

of control signals. The error between the desired output trajectory and the predicted

output is used to compute the desirable control signal. All predictive controllers are

essentially based on this basic idea.

Design
Parameters

. lP'

Reference _._Trajectory Controller

t_

Model

u _[ Plant _-_Y

Fig 2.1 Schematic of a model based control system



In Fig 2.1, u denotes the controller output, y denotes the plant output and w

denotes the reference trajectory or the desired plant output. In the case of model-based

controllers, such as pole-placement controllers or linear-quadratic (LQ) controllers, there

is a two-step process in the calculation of the control input u. For example, in LQ control

the first step involves obtaining controller parameters using the known model of the plant

and solving an optimization problem, and in the second step the controller parameters are

used to obtain a state feedback type control law.

In general, if the system is linear, there are no constraints on the input/output, and

the desired system output (or reference trajectory) is simple, then all of the above-

mentioned model-based controllers yield approximately the same results. That is, one

method is no 'better' than another. This is due to the fact that these methods yield linear

controllers that after some manipulations have similar structure and have sufficient

number of degrees of freedom. The underlying methodology to determine the controller

parameters is, however, different. The difference between the methods is in the design

parameters that are used to obtain the desired behavior of the control system. For

example, in LQ control, the weighting matrices in the performance function are the

design parameters used to obtain the desired behavior of the system. On the other hand,

in the pole-placement method the closed-loop pole locations are considered as the design

parameters. The design specifications of control system, however, are seldom defined in

terms of the closed-loop pole locations or weighting matrices. As a result, it is necessary

to transform the design specifications into the requirements on the design parameters. For

LQ and pole-placement controllers such a transformation is usually difficult to obtain

because the relation between the design parameters and the design specifications is, in



general, highly nonlinear. Consequently. theoretically possible results may not be

obtainedin practice.This, of course, limits the practical use of such methods. TherefOre,

one can say that the results obtained in practice are not only determined by what is

theoretically possible but also by the simplicity of the transformation of design

specifications into the requirements on the design parameters.

The predictive control concept was introduced simultaneously by Richalet [1] and

Cutler and Ramaker [2] in the late seventies. One of the attractive features of predictive

controllers is that they are relatively easy to tune. Other noteworthy features of predictive

controllers that make them more attractive in many applications are summarized below:

1. The application of predictive control is not restricted to single-input, single--output

(SISO) systems. Predictive controllers can be used for and applied to multi-input,

multi-output (MIMO) systems. The structure of the predictive controllers makes it

easy to extend their application from SISO systems to MIMO systems (See [3]). ....

2. In contrast to LQ and pole-placement controllers, predictive controllers can also be

derived for nonlinear systems. The only difference being the nonlinear system model

is then used explicitly to design the controller (See [4], [5]).

3. Predictive control is the only methodology that can handle system constraints in a

systematic way during the design of the controller. Since, in real life, systems have

constraints, this feature is rather important and is believed to be one of the most

attractive aspects of predictive controllers.

Predictive control methodology is an open architecture. That is, within the framework

of predictive control there are many ways to design a predictive controller. As a

o



result, over ten different type of predictive controllers, each with different properties,

have been proposed in the literature over the last decade.

5. The predictive control methodology can be used to control a wide variety of systems.

It can be used to control 'simple' as well as 'hard to control' systems; for example,

systems with large time delays, systems with non-minimum phase zeros, and systems

that are open loop unstable.

6. The architecture of predictive control allows feed-forward compensation of

measurable disturbances and/or reference trajectories in a natural way.

Predictive controllers also have some drawbacks. Being model-based controllers,

predictive controllers require a model of the system. In general, the controller design

process involves two steps: system modeling and control law design. Predictive control

provides the solution only for the controller design part. The model of the process must

• be obtained by some other methods. Another disadvantage arises due to the ope!a .....

architecture of the predictive control concept. As a result of such an open architecture,

many different types of predictive controllers can be obtained each having different

properties. Although, at fu'st glance, the differences between these controllers seem rather

small, these 'small' differences can yield very different behavior. As a result, the

selection of the type of predictive controller that should be used to solve a particular

problem becomes a difficult task. Therefore, a unified approach to predictive controller

design is needed which allows treatment of each problem within the same framework and

results in a significant reduction in the design costs.

Given below are different types of predictive controllers resulting from minor

variations in the basic predictive control algorithm. The differences lie in the design



parameters used, computational

performancefunctionused:

1. GPC

2. DMC

3. EPSAC

4. PFC

5. EHAC

6. UPC

techniques used, implementation

(Generalized Predictive Control) [6], [7]

(Dynamic Matrix Control) [8]

(Extended Prediction Self-Adaptive Control) [9]

(Predictive Functional Control) [10]

(Extended Horizon Adaptive Control) [11]

(Unified Predictive Control) [12], [13]

aspects, and

2.2 Receding horizon principle

Most of the predictive controllers listed above are based on the principle of

receding horizon. This section will describe control methodology based on this principle

and cite notable differences with LQ methodology. As stated before, receding horizon

principle forms basis for GPC methodology which is the main control technique used in

this research. In order to illustrate receding horizon principle, a discrete-time formulation

is used since it naturally lends itself for digital implementation on real life hardware.

However, it is to be noted that it is possible to design predictive controllers in Continuous

time also [ 14].

Consider a SISO system with input u and output y; Fig 2.2 shows time histories of

u and y in a typical predictive control scenario. The time scales in part (a), (b), (c), and

(d) are time scales relative to the sample k, which denotes the present. The time scales

shown at the bottom of Fig 2.2 are absolute time scales. First, consider figures 2.2('0) and

2.2(d) and suppose that the current time is denoted by sample k which corresponds to the



absolutetime t. Further u(kLy(k)and w(k)denote the controller output,

output, and the desired system output at sample k, respectively.

the system

'x.c/

k+l

!

k+N2

k_'_

lime

b

(c)

Ib

Fig 2.2 Receding horizon predictive control

Now, define:

U = [u(k),-'-,u(k + N 2 - 1)] r

9 =[_(k + l),..., _(k+ N_)]_

Yn = [Yd (k + 1),..., y_ (k + Hp)]r

where N_ is the prediction horizon and the symbol ^ denotes estimation, u is the

controller output, _' is the predicted system output, and Ya is the desired system output.



Predictivecontroller calculates a future controller output sequence u such that _/ is

'close' to the desired system output y,,. This desired system output is often called the

reference trajectory and it can be an arbitrary sequence of points. However, in general,

the response of a first or second order system model is used as the reference trajectory.

Now, suppose that instead of using the entire controller output sequence so

determined to control the system in the next N 2 samples, only the In'st element of this

controller output sequence (i.e., u(k)) is used and at the next sample, the whole

procedure is repeated using the latest measured information. This method is called

Receding Horizon Control (Pd--IC). Assuming that there are no disturbances and no

modeling errors the predicted system output _,(k + 1) predicted at the time t is exactly

equal to the system output y(k) measured at time t+l. Now, again, a future controller

output sequence is calculated such that the predicted system output is 'close' to the

reference trajectory. In general, this controller output sequence is different from the one

obtained at the previous sample, as is illustrated by Fig 2.2(c). The reason for using the

receding horizon approach is that this allows us to compensate for future disturbances or

modeling errors. For example, due to the disturbances or modeling errors the predicted

system output .9(k + l) predicted at time t is not equal to the system output y(k)

measured at (t+l). Then, it is intuitively clear that at time (t+l) it is better to start the

predictions from the measured system output rather than from the system output

predicted at time previous sample. The predicted system output is now corrected for

disturbances and modeling errors. A feedback mechanism is activated. As a result of the

receding horizon approach the horizon over which the system output is predicted shifts

one sample into the future at every sample instant.

10



An outline of a complete process used to determine the control signal is as

follows. Determinationof a future controller output sequence is based on the

minimization of a meaningful performance index such as the one given below with

respect to control input signal u "

N

J = _(_(k +i)- yd(k+O) 2
i=1

An optimal control sequence u" (k) is given by:

u" (k) = arg rain J,,m

Predicted output, .9, used in J is based on the plant model information and the future

control sequence available at current time. It is to be noted that the form of J used is

different for different types of predictive controllers. As is evident, obtaining u °(k) is an

optimization problem and the existence of global minimization as well as closed-form

solution for u" (k) depends on the form of J. When J has a quadratic form, a nice

analytical solution is possible in the case of linear systems with no constraints. For

nonlinear systems and/or nonlinear performance function J, numerical optimization is

necessary. For convenience, usually quadratic performance function that best reflects the

objectives is used.

Note that when u is obtained by such minimization controllers outputs do not

have any structure as in the case of LQ controllers where u is assumed to be of the form:

u(k) =-G(k)x(k), where G(k) is the vector of controller parameters. In predictive

control, such a priori assumption about the structure of the controller is not made and

hence it is possible to account for system constraints in a more systematic way. For

!1



example,in the caseof constraintson the inputs (like saturation),an optimal control

u" (k) is given by the solution of the following problem:

u'(k) = arg min J,.k)

subject to:

u,,.,, <u(k +i-l)<u,,_ l <i<_N_

In this case, however, analytical solution is not available and iterative numerical

optimization is used.

Conceptually, RHC is a simple method to synthesize a feedback control law for

linear and nonlinear systems. Although the method, if desired, can be used to synthesize

approximately the state-space LQ feedback with a guaranteed stabilizing property, it has

extra feature that makes it particularly attractive in the GPC setting. Since RHC strategy

involves a horizon made up of only a finite number of time steps, the RHC input can be

sequentialdy calculated online by existing optimization routines so as to minimize a

performance index and satisfy hard constraints; for example, bounds on the time

evolution of the input and the state. RHC is most suitable for slow linear and nonlinear

systems, where it is possible to solve constrained optimization control problems on line.

Receding horizon control was fn'st proposed to relax the computational shortcomings of

steady-state linear quadratic (LQ) control. In RHC, the current controller output u(k) and

the state of the system is obtained by determining over an N_ step horizon, the controller

output sequence Uik.k+U,3 which is optimal in a constrained LQ sense, and the whole

optimization procedure is repeated for next sampling instant. That is, at every sampling

instant, the plant is fed by the first element of the controller output sequence and the

12



subsequent,V,-l elementsare discarded. Next section points out main differences

betweenLQ andpredictivecontrol methodologies.

2.3 Predictive control versus linear quadratic control

As it has been shown previously, predictive controllers, LQ controllers, and pole-

placement controllers belong to a class of model-based controllers. Moreover, since LQ

controllers and predictive controllers share a similar framework which involves

minimization of a criterion function to compute the control signal, one can expect that the

LQ control be very closely related to the predictive control.

Because predictive controllers are in general discrete-time controllers, only

discrete LQ controllers are considered. Further, only the SISO case is considered for

simplicity. In order to show the similarities and differences between predictive control

and LQ control, a brief discussion of discrete-time LQ control is in order. A state-space

approach is considered for this purpose.

In discrete time LQ control, the process is given by:

x(k + 1) = Ax(k) + bu(k)

y(k) = crx(k)

where x(k) denotes the state of the process and A, b and c are the process parameters.

In order to calculate the controller output the following criterion function is minimized:

h'

J = _xr (k)Ox(k) + Ru2(k)

where N is the terminal sampling instant, O is a weighting matrix and R is a weighting

factor. Hence, similar to predictive controller design, a criterion function is minimized

over a horizon. However, in contrast to predictive controllers the receding horizon

13



approachis not employed. This is a fundamentaldifference.The criterion function is

minimized only once (at k=0), resulting in an optimal controller output sequence from

which the controller output used to control the process is taken at every sample. Hence,

future disturbances and modeling errors can not be taken into account. However, it is

shown in, for example, [15] that the controller output sequence determined in this way

can also be generated by the following linear state feedback:

u(k) = --R r (k)x(k)

The feedback vector R is time varying despite the fact that the process is time invariant.

However as k increases k becomes constant. This is one of the reasons why in practice

the solution for N--_ ** is used. A time-invariant state feedback controller is then

obtained which, because of the feedback, attenuates the effect of disturbances and

modeling errors on the behavior of the control system. Disturbance can also be taken into

account explicitly by introducing disturbances on the states and on the output of the

system. Then, a stochastic optimization problem must be solved. This problem is usually

solved by applying the separation theorem which states that the stochastic optimization

problem can be separated into two parts: find a state estimator which gives the best

estimates of the states from the observed outputs, and find the optimal state feedback law

which is now a feedback from the estimated states. The latter problem is again a LQ

problem (a deterministic optimization problem) and is solved by minimization of the LQ

criterion function in which the real states are replaced by their estimates.

Another advantage of using N _ ** is that the nominal closed-loop system (the

closed-loop system assuming that the model is identical to the process) is guaranteed to

14



be stable. The feedback vector k for N _ _ can be obtained by solving the algebraic

Riccati equation (ARE).

For finite N, the optimal controller output sequence can be found by using

dynamic programming. First, the optimal controller output u(N) is determined, then

u(N-1), and so on. It now follows from the Bellman's principle [16] that once the

controller output sequence u(0),...,u(N) minimizing:

N

J = zxr (k)Qx(k) + Ru_(k)
k---0

has been found, minimization of

N

J = '_ x r (k)Qx(k) + Ru 2(k)
k=)

under the assumption that u(0),.-, u(j -1) have been supplied to the process and there are

neither disturbances nor modeling errors, yields a controller output u(j),...,u(N) which

is equal to that obtained when minimizing the LQ criterion function. Knowing this, finite

horizon LQ control can also be obtained by using a receding horizon framework where

the prediction horizon is decreased by one at every sampling instant. Similar to predictive

controllers, an optimal controller output sequence is calculated over the prediction

horizon and only the first controller output in this sequence is used to control the process.

At the next sampling instant, the situation changes. Again, an optimal controller output

sequence is calculated but now over an interval with length N - 1 keeping the end of the

interval constant (namely at time t + N ). Assuming that there are no disturbances and no

modeling errors, it follows from Bellman's optimality principle that the optimal

controller output sequence found at t+l is identical to the one found at time t. When the

15



prediction horizon goesto infinity this differencebetweenLQ and predictivecontrol

vanishes,asshownin [17].

In conclusion it can be stated that for a finite prediction horizon the fundamental

difference between predictive control and finite horizon LQ control is the receding

horizon approach with a fixed length prediction horizon employed by predictive

controller in contrast to a decreasing length prediction horizon employed by LQ

controllers.

An important disadvantage of LQ control is that, in general, it is quite difficult to

translate the design specification into weighting matrices in the criterion function because

the states of a discrete-time process are usually artificial and hence they are not directly

related to the true states of the process. Rule of thumb methods on how to choose the

criterion parameters are not readily available. An important advantage of infinite horizon

- LQ controllers is that, under some quite general conditions, the closed-loop system is

guaranteed to be stable. Usually this claim can not be made for finite horizon predictive

controllers.

2.4 Generalized Predictive Control

i

Generalized Predictive Control (GPC) methodology belongs to a class of receding

horizon-based predictive control techniques. GPC has been analyzed and implemented

successfully in various process control industries since the end of the 1970's. GPC can

systematically take into account the real plant constraints in real-time. One main feature

of GPC is that, it can control non-minimum phase plants, open-loop unstable plants and

plants with variable or unknown dead time. GPC is a special case of RHC. In particular,
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GPC is a type of RHC in which compensatoris dynamic and hascertain stabilizing

propertiesinheritedfrom RHC.

Thebasic structure of predictive control methods consists of a predictor model

and an optimization algorithm that minimizes a particular cost function. The choice of

different prediction model and optimization algorithm leads to different predictive control

techniques. Imtially, the prediction models were simply generated from step response

values at the sampling instants. For GPC, a model that takes into account the effect of

noise is used. This model is called Controlled Auto-Regressive Integrated Moving-

Average (CARIMA) model which in standard terminology would be called as Auto-

Regressive Integrated Moving Average eXogenous input (ARIMAX) model. This

input/output model is given by:

A(q-_) y(t) = B(q-I )u(t) + C(q -_ )e(t) (2.1)

where q-i denotes the back shift operator, so A(q -3 ), B(q-I ) and C(q -_) -are polynomials

in q'_. The A(q -_) and B(q "_) polynomials define the plants dynamics, which are the

poles and zeros of the plants respectively. Typically, in linear system, the b 0 coefficient

in the B(q -_) polynomial is set to be zero. In the model used here, the b o term will be

learned. The C(q-') polynomial defines the dynamics of the sensor noise.

GPC is a predictive control technique that uses a long-range prediction cost

function. At each sampling instant GPC uses predicted values from the predictor model to

minimize a cost function that takes into account predicted tracking errors and control

signals. Part of the success of these techniques is due to the fact that instead of choosing
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GPCpredictstheperformanceof theplant.Thereareseveralrulesof thumbto selectN.,

Clarke shows that the rising time of the plant model will be suggestive [6].

Since the cost function is quadratic, analytic solutions of the minimization are

possible using one of the prediction models. The analytic solution leads to a standard

implementation of a feedback digital controller. In practice, an advantage of Model Based

Predictive Control (MBPC) techniques is that they can also handle implementation

constraints such as limits on actuator amplitudes. In this case, the cost function is

minimized on-line. The slow time constants of process control have made it possible for a

variety of numerical techniques to be used in real-time control.

An on-line GPC algorithm could be implemented as follows:

1. D,m(n + N t ) ym(n + N I + 1)

generated. If the future trajectory of

• .. ym(n+N 2)_

ym(n) is unknown, keep

reference trajectory is

ym(n) constant for the

future trajectory. For real-time minimization of the cost function, the reference trajectory

is usually smoothed using a reference model.

2. If the first time, start with an initial control input vector,

[u(n+l) u(n+2) ... u(n+N_)_, equal to the zero vector, else start with the

previously calculated control input vector. Generate predicted output vector of the plant,

[yn(n + N I) yn(n + N_ + 1) ... yn(n + N 2)_', using the plant model.

3. A new sequence of control inputs, [u(n+l) u(n+2) ... u(n+N2) _, is

calculated that minimizes the cost function.

4. Repeat steps 2 and 3 until desired minimization is achieved.

5. Send the first control input, to the plant.

6. Repeat entire process for each time step.
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Figure2.3showstile blockdiagramof theaboveprocess:

f

r(n)___ ReferenCeModel

Cost Function

Minimization ] /J_l t---"

DPDT Switch _
Plant t_Model

_(n)

GPC Algorithm

y(n)

Fig 2.3GPCblock diagram

The cost function minimization (CFM) algorithm evaluates steps 3 and 4. The

double pole double throw (DPDT) switch is kept in the down position while doing

prediction. Having this switch lets the plant model to use previous measured plant outputs

for future predictions and in the down position adaptation of the plant model can be

performed.

A standard GPC algorithm is limited by the use of a linear predictor model. In

many applications, the plant nonlinearities are more prevalent and the plant dynamics are

faster than in the process industries. One way GPC can handle nonlinear plants is to use

many linearized plant models about a set of operating points. If the plant is highly

nonlinear, the set of operating points can be very large. Another technique involves

developing a nonlinear model, which is an approximation of the dynamics of the actual

nonlinear plant. If the approximation is incorrect, the accuracy of the model will be

reduced. Ideally, a general-purpose nonlinear black-box estimator can serve the purpose.
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Neural netv,orkshavebeenshown to be goodnonlineardynamicsystemestimators.By

using neuralnetworkaspredictor for GPC, theability of controller to makepredictions

for a generalnonlinearplant is improved.Theuseof neuralnetworksasplantestimators

will beaddressedin moredetail in the nextchapter.

2.5 Modeling of the plant and disturbances

One important requirement of any control system is the stability of the closed

loop system. In most cases, the controller design is based on the plant model information,

which is approximate and does not account for the real life disturbances that are likely to

affect the operation of the system. In view of this, a more realistic goal of the control

system would be to ensure the closed loop stability in the presence of modeling errors,

parametric uncertainties and unknown disturbances. The controllers designed using GPC

methodology are capable of handling above mentioned uncertainties and disturbances

while delivering required performance characterized by cost function to be minimized.

The choices of plant model as well as disturbance model is an important aspect of the

control design methodology in any model-based controller, and hence, the following

subsections are devoted to this topic. The treatment given below refers to the linear

systems.

2.5.1 System modeling

The linear system to be controlled can be represented by the following transfer

u(k - 1) (2.3)

function model in discrete domain:

y(k) = q-'r B(q-I)
A(q-i )
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Now introducethefollowing identity:

l -i Ni

-= = M, + q --=- =_ M,A = I - q-iN, (2.7)
A A

has a degree less than or equal to i - I and N, is of degree n a - 1. Eq.(2.7) iswhere M,

called a Diophantine equation whose solution can be computed manually using long

division. Rewrite the Eq.(2.7) as,

q-,_

_(k+i)- _ u(k+i-1)+N,[y(k)-_(k)] (2.8)

The first part of Eq.(2.8) is prediction fully relying on the model, while the second

part of Eq.(2.8) corrects for modeling errors or disturbances present on the output of the

process. Obviously, if there are neither modeling errors or any kind of disturbances, the

second part is equal to zero and the i-step-ahead predictor coincides with Eq.(2.5).

2.5.2 Disturbances modeling

Thus far, disturbance of the system has not been explicitly taken into account. In

order to take this disturbance into account while predicting the output of the process, the

disturbance must also be modeled. For this purpose, the model Eq.(2.3) is extended with

a disturbance term _j(k) which represents the totality of all disturbance and without loss

of generality is assumed to be located at the output of the process:

y(k) = q-'tB(q-l) u(k - l) + _(k) (2.9)
A(q-t )

Our goal is to obtain prediction of the process output at t = k + i. Because this

prediction depends on the disturbance characteristics, two classes of disturbance are

considered hereafter.
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Deterministic Disturbance

D(q- )

where v(k) is a signal that can be measured but not predicted and C and D are monic

polynomials with degree n c and n o respectively. Prediction of _(k) at t = k +i is

realized by substituting k + i for k in Eq.(2.10):

C(q-' ) v(k + i) (2.11 )
+/)=

Because, by assumption, v(k)cannot be predicted it is not possible to calculate

_(k +i) exactly. However, because of the filter C(q-I)- _(k +i) not only depends on
D( q-I ) '

the unknown v(k + l),-..,v(k +/)but also on v(k),v(k- 1)... which are assumed to be

known. In order to separate Eq.(l.ll! in future and past signals, the following

Diophanfine equation is used:

c _,r,
-_- = E, + q -_- (2.12)

where E i and F_ ate polynomials with degree:

nE, =i-1 If n o >0

n_ =mJn(i-l,n c) If n o =0

n_, = max(n c -i,n o -1)

Note that a negative degree of a polynomial implies that the polynomial does not exist

and may be replaced by zero. Using Eq.(2.12), Eq.(2.11) can be rewritten as:

F, v(k )
_(k + i) = E,v(k + i) + (2.13)
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The first term of Eq.(2.13)involves future valuesof v(k) and is thus unknown. The

second term of Eq.(2.13) is known because, by assumption, v(k)can be measured. Note

that this second term is the future response of _(k) if v(k +i) = 0 for i _>1. In order to be

able to calculate _(k + i) an assumption for v(k + i) must be made for i > 1. Hence, some

a priori of v(k) must be available.

Stochastic Disturbance

A stochastic disturbance appearing on the output of the process is assumed to be

described by:

C(q'_) e(k)
_(k)=D-_q__) (2.14)

2
where e(k) is a discrete white noise sequence with zero mean and variance o',. Note

that this disturbance model is quite general and all stationary random processes with

rational spectral density can be described by Eq.(2.14) with the roots of C and D inside

the unit circle.

The prediction of _j(k) at t = k + i is realized by substituting ( k + i ) for k in Eq.(2.14):

+ i) = C(q-')
D_q_t) e(k + i) (2.15)

Separation of future and past term is again realized by using the Diophantine equation

Eq.(2.12):

_(k + i) = Eie(k + i) + -_e(k) (2.16)

The first term involves future noise and thus is unknown. Although the second term

involves the unknown e(k) it can be calculated using data available at t = k.
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F
;.(k+,)--G..(k.+_-d-_!+ _'_(k-l_+_b(_/-;(k>].• a

past

(2.20)

where _(k) is given by Eq.(2.18). Because the degree of G, is less than or equal to

i-2-1, the first term of Eq.(2.20) involves future controller outputs only. The other

terms in Eq.(2.20) do not depend on the future controller outputs and hence are fully

determined at t = k.

For convenience, the i-step-ahead predictor Eq.(2.20)

i = 2 + 1.... , Hp (Prediction Horizon) can be rewritten in the matrix notation yielding:

where:

with

_ = Gu + Hff + Fc

--D(k + 2 + 1),.-.,_(k + N2)]"

U = [u(k),...,u(k + Hp -d - 1)] r

ff = [ff(k - l),ff(k - 2),...]r

c - [c(k),c(k - 1),-..]r

u(k)

c(k) = y(k) - _(k)
C

and the dimensions of _,u,a, and c are given by:

D] = (N_ -2)xl

[u]= (N2 - 2)x I

[ff] = (m.ax(n.,) + 1) x 1
t

for

(2.21)
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[c] = (ma_x(nr )+ l)xl
t

The matrices G, H, and F are built up of the elements of the polynomials G,, H,,

and F,, respectively:

a m.

n

go

I g'

Lgup-2-1

"H,_+ t"

Hi

. HN,, .

e,/

,e ,j

"°° 0

go

• °° 0

...... go

[C] = (N, -,_) × (N, - _)

where g_ denotes the j th element of G i . Note that i >_d + 1 since prediction of

y(k + 1),..., y(k + d) does not make sense because these values cannot be influenced by

the future controller output sequence u. Note also that G is lower triangular.
t

As already mentioned, since the disturbance model is assumed to be described by

Eq.(2.10) or Eq.(2.14), it can be taken into account simply by adding predictions of these

disturbances to Eq.(2.21):

= Gu + Hff + Fc + _ (2.22)

where:
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The generalizedpredictive control law can be derived by the minimization of the

criterion function Eq.(2.24) subjectto Eq.(2.25) with respectto the controller output

sequenceover the control horizon N,, :u(k) ..... u(k + N_ -1). Optimization of criterion

function J with respect to the control vector u satisfies the following stationary

condition:

3J

g= c?u 0

where g denotes the gradient and the symbol o3 denotes the partial derivative. If U" is

the stationary point then u" is a local minimum. If the Hessian d is positive definite with

respect to u, then the local minimum is the global minimum. The Hessian is given by:

_92j
J=_

Ou 2

In order to calculate the gradient of (Eq.(2.24)) with respect to u, the criterion function

Eq.(2.24) is rewritten in the matrix notation as:

where:

J =(_'" -ya')r(9" -y.')+ _.u" ru"

Yd" = [Y_ (k + N t) ..... y_ (k + N 2)]r

9" = [_(k + N,) ..... ._(k+ N2)I _

U" = [u" (k) ..... u" (k + N 2 - d - I)] r

u"(k) = Au(k)

Introduce the vector _:

u" = [u(k) ..... u(k + N,, - 1)1r

(2.26)

(2.27)
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Note that u contains only those elements of the controller output sequence that need to

be calculated. The other elements over the prediction horizon must satisfy Eq.(2.25). The

gradient of Eq.(2.26) with respect to _ becomes:

a__J_J=2 O-_--(_," - w')+ 2_ 8_u_"u" (2.28)o_ ou

Ou"
where the partial derivatives --_ and _ in equation Eq.(2.28) need to be determined.

Relationship between u" and

The relationship between u and

u(k + N,) ..... u(k.+ N_ -_I - 1) from Eq.(2.25):

Au(k+i-1)=O,l<N. <i<N 2 -d

Now

can be derived by solving for

(2.29)

using the following Diophantine equation, the necessary relationship between u

and _ can be obtained:

1 Ei_u" + q-i+u. F,.__. q-i.u.-- = -- _ AEi_u. = 1- F,. u. (2.30)
A a -

where the degree of F,_,. is given by n A - 1(= 0).

It follows from Eq.(2.30) using Eq.(2.29):

u(k + i - 1) = F___, u(k + N, - 1), 1 _<N, < i < N 2 - d (2.31)

Separation of the future and the past term is given by using the relationship:

F,._u.= Gi_N. + q-U'Hi_N. (2.32)

where the degrees of G+_uand Hi_uare given by n o =min(N,,nn)-I and

n u = n a - N,, - 1, respectively.

Using Eq.(2.32) in Eq.(2.31) yields:
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u(k+i-l)=G, vu(k+N_-l)+H , u(k-l) ('_ _'_1
- A • --- i ....

with 1 _<N, < i _<N 2 - d. Note that from Eq.(2.32) and Eq.(2.30), it can be easily shown

that because A = 1 - q-_, the F,_.,_. = 1, G,_v. = 1, and the H,_u. = O.

Now the relationship between u and _ can be given in a matrix notation as:

u = M_ + Nfi (2.34)

where M is a matrix of dimension (N 2 -d)xN •

.-.

"1 0

0 1

0

• ° ° .
• ° .

1 0

0 ... 0 1

0 ... 0 gl.,,, "'" gz.o

0 "" 0 gj._; "" gj,o

g#t

)
I
I

_N,-N,-d

N is a matrix of dimension (N 2 - d) x (n,, - N. )"

--..

°,o 0

0 ... 0

h .o ... h,.,,

hi, o ... hi.,, w

N,,

where j = N 2 - N,, - d, and 0 is given by:.

fl = [u(k - 1),...,u(k + N, - n,,)] r

Note that if N,, = N 2 - d, then M = I and N = 0.

Next, the relationship between u' and u is determined:

32



u'(k+i-l)=Au(k+i-1) l<_i<_N,-d (2.35")

Separation of future and past elements is obtained by using:

A = _, + q-_f2, (2.36)

where _i and f2, are polynomials of degree min(i - 1,n_) and (n,, - i) respectively. Also

_e is a monic polynomial.

Using Eq.(2.36) in Eq.(2.35) yields

u" (k + i - l) = _iu(k + i - l) + f2,u(k - l) (2.37)

Note that the f_ = 0, for i > l and when i = l, f2_ = -1, so the relationship between u'

and u can be obtained as:

u" = _u + f_u(k - I)

where _ is a lower triangular matrix of dimension (N 2 - ,_) x (N 2 - d) and f2 is a

matrix of dimension (N 2 - tt) x 1.

So, the relationship between u" and fi" can be described as:

u" = _MO+ t"2u(k -1) (2.38)

c3u"

The partial derivative _ now becomes:

Ou" = Mr_r

Relationship between y" and

The partial derivative 3______"can be calculated by using the prediction model of the system

Eq.(2.22):
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where:

_" = Gu + Hli + Fc + _ 12.39)

_¢" = [}(k + N, ) ..... _(k + N 2 )]r

u = [u(k) ..... u(k + N 2 -_l - 1)1r

Using the Eq.(2.37) and Eq.(2.39), the relationship between y" and _ is given by:

f¢" = GMu+ Hg+ Fc+_ (2.40)

and hence"

_______"= M "rG r

The predictive control law

The gradient Fx1.(2.28) becomes:

_J = 2M r (GrG + A_r_)MU + 2MrG r (Hff + Fc + _ - w" -_A_r_u(k - 1)) (2.41)
_U

and the Hessian d is:

d = 2M r (GrG + _r_)M (2.42)

Assuming that the Hessian is singular, which means the global minimum of cost

function has been archived, this minimum value of J with respect to g can be obtained

by setting the gradient Eq.(2.41) equal to zero and solving for _:

U = [M r (GrG + &)M] -1MrG r (w" - Hff - Fc -_ - ;t_r f",.u(k - 1)) (2.43)

Note that the matrix to be inverted is of dimension N, x N,. Hence, a small control

horizon is preferable for numerical reason in order to save computation time. In many

practical situations the control horizon can be chosen small like N, _<na +1 and hence

the inverse can be calculated easily for low-order systems. The first element of U which
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is equal to u(kl is used to control the system. All other elements are not used and need

not be calculated. Then, the Eq.(2.43) can be reduced to:

where:

u(k ) = vrya" -hr ff - fr c-vr _ - Zzr u(k - 1) (2.44)

v r = xrG r Ix(N 2 -N I +1) (2.45)

xT T n-IIIilT=e I _x, na lx(N2 d) (2.46)

etr = [I,0 ..... 0] r 1x N, (2.47)

R, =M r (Gr G +/].(Dr(D)M N,, x N, (2.48)

h r = v rH (2.49)

fr = vr F (2.50)

z r =xr_r_ lxl (2.51)

From the control law of Eq.(2.44), it can be seen that the difference between the

model prediction and the system output is calculated by vector c, and the disturbance

from the unknown source, _, which has influence on the output of the system is also

measured and included in the calculation of the control signal. So, one can say that the

prediction error and the disturbance is accounted for in the predictive control law. The

results presented in this chapter will be used in the development of NGPC control design

methodology given in later chapters.
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CHAPTER 3 Neural Networks in Control Applications

This chapter gives background of neural network pertinent to the research

presented in this thesis and describes architecture and training procedures for neural

network for learning plant dynamics.

3,1 Neural network overview

Work on Artificial Neural Networks, commonly referred as "Neural Networks"

has been motivated right from its inception by the recognition that the brain computes in

an entirely different way from the conventional digital computer. Investigators from

across the scientific spectrum, including neurobiologists, psychologists, physicists,

computer scientists and engineers, have been attracted to this field. Neurobiologists and

psychologists are interested in real neural networks and particularly in understanding the

physiological and psychological functioning of the human neural system. The interest of

neuroscientists is consequently in the stimulus-response characteristics of individual

neurons as well as networks of neurons. Psychologists study brain functions at the

cognitive and behavioral level and are interested in using neural network based

techniques to create detailed models of human behavior. Computer scientists are

intrigued by the prospect of designing novel information processing devices. All research

communities are exited at the opportunity for cooperative research among scholars of

different fields and the prospect of drawing ideas and perspectives from many different

disciplines. They all believe that a meaningful theoretical integration of knowledge from

different fields is possible and will yield useful solution for many scientific problems.

36



Systemtheory is scientific discipline that is inherently interdisciplinar)in nature

and extends from design, development and production on one hand to mathematics on the

other. Advances in system theory have been made through a combination of modeling,

computation and experimentation, all of which are essential to the study of neural

networks. The different areas of current research in system theory including adaptive and

learning systems, nonlinear systems, stochastic systems and hierarchical and

decentralized systems are directly relevant to the study of dynamic systems in which

neural networks are to be used as components.

Nonlinear control theory deals with the modeling and control of nonlinear

dynamical systems. When the characteristics of the process to be controlled are either

unknown or only partially known, the problem belongs to the domain of nonlinear

adaptive control. Linear adaptive control theory, which has been explored for over thirty

years, has provided numerousconcepts related to the structures that are appropriate for

both identifiers and controllers. From a system theoretic point of view artificial neural

networks can be considered as convenient pa.rameterizations of nonlinear maps from one

finite dimensional space to another, Since methods for training such networks using

input-output data are currently well known, they are ideally suited to approximate

unknown nonlinear functions in differential or difference equations used to represent

nonlinear dynamic systems. From the foregoing comments it is clear that the results in

nonlinear control theory, concepts and structures provided by linear control, and the

approximating capabilities of neural networks have to be judiciously combined to deal

with problems of nonlinear adaptive control that arise in complex dynamic systems.
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Neural netv,orks are aggregates of interconnected nerve cells or neurons. The

human brain is a neural network consisting of 100 billion neurons in which a single

neuron can be connected to upon 10,000 other neurons, so that there are an estimated

1003 trillion connections. Artificial neural networks (ANN) are so named because their

design is based on the structure of natural neural networks. The great interest in artificial

neural networks stems from the fact that the human brain can learn, remember, think and

act purposefully, and building intelligent systems that can model human behavior has

been one of the major aims of engineers and computer scientists over the years.

Most of the research in artificial neural networks has been on static feedforward

multilayer networks and the recurrent Hopfield network. The major applications of such

networks have been in the areas of function approximation, optimization, and the

pattern recognition. With the introduction of dynamics and feedback, the scope of

applications of multilayer neural networks was significantly increased. Hence, ',.he

control of complex systems, using intelligent sensors and controllers based on neural

network, will involve the study of dynamical systems and neural networks connected in

arbitrary configurations.

3.2 Benefits of neural networks

Neural network derives its computing power through its massively parallel

distributed structure its ability to learn and generalize. Generalization refers to the

neural network producing reasonable outputs for inputs not encountered during training

(learning). These two information-processing capabilities make it possible for neural

networks to solve many complex (large-scale) problems that are currently intractable. In
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practice.

independentmode. Rather, they need to be integrated into a consistentsystem

engineeringapproach.Specifically,acomplexproblemof interestis decomposedinto a

numberof relatively simpletasks,and neural networksareassigneda subsetof tasks

(e.g., pattern recognition, associate memory, control) that match their inherent

capabilities.It is important to recognize,however,that there is a long way to go (if

ever)beforeacomputerarchitecturecanbebuilt to mimic ahumanbrain.

Multilayer neuralnetworksoffer the following propertiesandcapabilitiesthatwill

beusefulfor us in modelingcomplexsystemsin model-basedcontroldesigns:

1.Nonlinear mapping: A neuron with nonlinear activation function acts like a

nonlinear mapping device. Consequently, a multilayer neural network, which is made

up of large number of interconnection of neurons, forms a nonlinear modeling device.

Moreover, the nonlinearity is of a special kind in the sense that it is distributed

throughout the network. Nonlinear mapping is a very important property, particularly if

the physical system to be modeled is inherently nonlinear.

2. Learning ability: A popular paradigm of learning called supervised

learning involves the modification of synaptic weights of a neural network by applying a

set of labeled training samples or task examples. Each example consists of a unique input

signal and the corresponding desired response. The network is presented an example

picked at random from the set, and the synaptie weights (free parameter) of the network

are modified so as to minimize the difference between the desired response and the actual

response of the network produced by the input signal in accordance with an appropriate

statistical criterion. The training of the network is repeated for many examples in the set

hov, ever. neural netxvorks cannot provide the solution by v, orking in
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until thenet_vorkreachesastead)state,i.e. it reachesa statewherethereareno further

significantchangesin the synaptic weights. Thus, the network learns from the examples

by learning an input-output mapping for the problem at hand. Such an approach brings to

mind the study of nonparametric statistical inference, which is a branch of statistics

dealing with model-free estimation. Consider, for example, a pattern classification task,

where the requirements is to assign an input signal representing a physical object or event

to one of several prespecified categories (classes). In a nonparametric approach to this

problem, the requirement is to "estimate" arbitrary decision boundaries in the input signal

space for the pattern-classification task using a set of examples, and to do so without

invoking a probabilistic distribution model. A similar point of view is implicit in the

supervised learning paradigm, which suggests a close analogy between the input-output

mapping performed by a neural network and nonparametric statistical inference.

3. Adaptivity: Neural network has an inherent capability to adapt its synaptic

weights to changes in the input-output model of the surrounding environment. In

particular, a neural network trained to model in a specific environment can be retrained to

accommodate minor changes in the operating environment conditions. Moreover, when it

is operating in a nonstationary environment (i.e., one whose statistics change with time),

a neural network can be designed to change its synaptic weights in 'real time'. The

natural architecture of a neural network for pattern classification, signal processing, and

control application, coupled with the adaptive capability of the network, make it an ideal

tool for use in adaptive pattern classification, adaptive signal processing, and adaptive

control. In general, the more adaptivity we have in the network modeling the system, the •
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more robustnesswill result in performancexvhenthe svstemis requiredto operatein a

nonstationaryenvironment,providedtheadaptivesystemis stable.

4. Evidential Response: In the context of pattern classification, a neural

network can be designed to provide information not only about which particular pattern

to select, but also the confidence in the decision made. This latter information may be

used to reject ambiguous patterns, should they arise, and thereby improve the

classification performance of the network. This property is not directly used in control

applications presented in this work.

5. Contextual Information: Knowledge is represented by the very structure

and the activation state of a neural network. Every neuron in the network is potentially

affected by the global activity of all other neurons in the network. Consequently, a neural

network deals with contextual information naturally.

6. Fault Tolerance: A neural network, implemented in hardware form, has the

potential to be inherently fault tolerant in the sense that its performance is degraded

gracefully under adverse operating conditions. For example, if a neuron or its connecting

links are damaged, recall of a stored pattern is impaired in quality. However, owing to the

distributed nature of information in the network, the damage has to be extensive before

the catastrophic failure can occur. The overall response of the network shows degradation

in performance rather than resulting in catastrophic failure.

3.3 Model of a neuron

A neuron is an information-processing unit that is fundamental to the operation of

a neural network. Figure 3.1 shows a model of a neuron.
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Fig 3.1 Model of a neuron

The three basic elements of a neuron model can be described as follows:

1. A set of synapse or connecting links, each of which is characterized by a

weight or strength of its own. Specifically, a signal Xj at the input of synapse j

connected to neuron k is multiplied by the synapse weight W_. It is important to make a

note of the ordering in which the subscripts appear Wo. The first subscript refers to the

neuron the input is connected to and the second subscript refers to the input to which the

weight is applied.

2. An adder for summing the input signals, weighted by the respective weights on

the synapse of the neuron. The operation constitutes a weighted linear combination of

inputs.
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3. An activation function for limiting the amplitude of the output of a neuron. The

activation function is also refereed to as a squashing function since it squashes (.limits)

the permissible amplitude range of the output signal to some finite value.

The model of a neuron shown in Fig 3.1 a/so includes an externally applied

threshold Ok that has the effect of lowering the net input of the activation function. On

the other hands, the net input of the activation function may be increased by employed by

a bias term rather than a threshold. The bias is the negative of the threshold.

In mathematical terms, a neuron k can be described by writing the following pair

of equations:

and

j=!

y,_ = ¢p(u k - Ok ) (3.2)

where X_,X2,...,X p are the input signals; Wk_,Wk2 ..... W_,are the synaptic weights of

neuron k; ut is the linearly combined inputs; 0_ is the threshold; tp(.)is the activation

function; and Yk is the output of the neuron. The activation functions define the output of

a neuron in terms of the activity level at its input. We may identify several types of

activation functions, for example, threshold function, piecewise-linear function, typically

the most common one is sigmoid function, which is defined as a strictly increasing

function that exhibits smoothness and asymptotic properties. An example of the sigmoid

function is the logistic function, defined by:

1
tp(v) = (3.3)

1 + exp(-av)
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v,here a is the slope parameter of the si_moid function. By varying this parameter, xve

obtain sigmoid function of different slopes, as illustrated in Fig 3.2.

Sigmoid FunctiOn with different a
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Fig 3.2 Sigmoid function with different ' a'

In fact, the slope at the origin equals a/4. In the limit, as the slope parameter

approaches infinity, the sigmoid function becomes simply a threshold function.

3.4 Model of a layer

A layered neural network is a network of neurons organized in the form of layers.

A layer consists of a set of nodes. This collection of nodes maps the N i -dimension

vector of inputs to the N i÷l-dimension vector of outputs. A schematic of the layer

activity is given in Fig 3.3.
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Fig 3.3 Layer of a neural network

In the first stage, the node activities are calculated using Equation (3.1) and (3.2).

This activity can be simply represented by the product of the input vector

[X_,X2,.--,Xu,] r and a weight matrix W, the addition of a bias vector b, and the

transformation function _p. The equations that describe this activity are :

N o

u, = _jWj.iX , +bj (3.4)
i=1

and

yj =q_j(u_) For j=l,2 ..... N' (3.5)

where

X, is the i _ element of the input vector of length N °,

Wta is the weight connecting the i '_ input, Xi, with the j'_ output y j,

b i is a bias input to the j'_ node,

q_j (-) is the output function of the j,h node,

yj is the output of the j,h node.
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3.5 The network architecture

The manner in which the neurons of a neural network are structured is intimately

linked with the learning algorithm used to train the network. We may therefore speak of

learning algorithm (rules) used in the design of the neural networks as being structured.

In general, we may identify four different classes of network architectures:

1. Single-Layer Feedforward Networks

2. Multilayer Feedforward Networks

3. Recurrent Networks

4. Lattice Structures

The most commonly used neural network structure in the multilayer feedforward

networks draw our attention here. The multilayer feedforward network distinguishes

itself by the presence of one or more hidden layers, whose computation nodes are

correspondingly called hidden neurons or hidden units. The function of the hidden

neurons is to intervene between the external input and the network output. By adding one

or more hidden layer, the network is enabled to extract high-order statistics, which is

particularly valuable when the size of the input layer is large. A multilayer feedforward

neural network can be broken down into three parts:

I. Input Layer

2. Hidden Layer, and

3. Output Layer

The input layer distributes the inputs to the following layer, it doesn't multiply

any weights and doesn't process the input vector through a output function. The hidden

layers and the output layer consist of processing nodes. Each layer is fully connected via
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connection ',;'eights to the next layer as shown in Fig 3.4. This net,,vork has L layers v,ith

N t nodes on layer I. The input layer is denoted as layer O.

Input Hidden Layer Output

L

X! _ r--'-; + •..... __ ++--'-'; _ :,"+_-_ ..j_+__;Y l

_ illlll

• E
.;//\\ _ : j, \\ : ,

x : .,,:_ _ +'L:-_ ,-=-, Yu"......
Layer I Layer L-I Layer L

Fig 3.4 Multilayer feedforward neural network

Forward propagation is accomplished by presenting an input vector,

[X I X2 ...Xu, ]r , to the network. This input is fed out to the r-st hidden layer and

propagated through the nodes by evaluation of:

NI-,

t _..,t t-Z+b_uj = 2..,w_.iy,
i=i

I I I
yj = q_j (u j)

is the number of layers,

is the number of nodes on the l 'h layer, l = 0,1,2,..., L,

where •

L

N l

(3.6)

(3.7)
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" I3'j is/he output of the j" node ofthe 1 '*layer _it I = 0 then 3_= X. ),

X, is the j'_ element of the input node with a vector of length N °,

W I is the j,i '^ element of the weight of the 1 '^ layer with a matrix of
ia

size N TM x N 1,

bj is a bias input to the j'* node of the l 'Alayer,

_Pl (') is the output function of the j,b node of the !*_layer.

The output at each layer is fed to the next layer, and the process is repeated until

the output layer L is reached. Thus, output signal at layer L is nonlinear function of input

signal at layer 0. Next section describes how such an architecture can be used to model

dynamic systems.

3.6 Neural network as input/output estimators

3.6.1 Introduction to I/O estimator using multilayer neural networks

Multilayer network have been applied successfully to solve some difficult and

diverse problems by training them in a supervised manner with a highly popular

algorithm known as error back-propagation algorithm. This algorithm is based on error-

correction learning rule. A brief introduction to this type of learning rule will be useful

before the actual algorithm structure is introduced in later section.

The error back-propagation process consists of two passes through the different

layers of the network: a forward pass and a backward pass. In the forward pass, an input

vector is applied to the sensory nodes of the network, and its effect propagates through

the network, layer by layer. Finally, a set of outputs is produced as the actual response of
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the net_ork.Duringthefor_vardpassthe_eights of thenetworkareall fixed. During the

backward pass,on the other hand, the weights of the network are all adjustedin

accordancewith theerror-correctionrule.Specifically,theactualresponseof thenetwork

is subtractedfrom adesired(target) responseto produceanerror signal.Thiserrorsignal

is propagatedbackward through the network, against the direction of the weights

connections,hencethename"error back-propagation".Theweightsareadjustedsoasto

make the actualresponseof the network move closer to the desired response.The

learningprocessperformedwith the algorithmis calledback-propagationlearning.

The researchinterests in Multilayer feedforwardnetworks datesback to the

pioneeringwork of Rosenblatt (1962) on perceptronsand that of Widrow (1962).

However, the tool that was missing in thoseearly days of multilayer feedforward

networkswaswhatwe nowcall back-propagationlearning.Theusageof theterm"back-

propagation"appearsto have evolved after 1985.However, the basic idea of back-

propagationwasfirst describedby Werbos (1974) in his Ph.D. thesis.Subsequently,it

was rediscoveredby Rumelhart,Hinton, andWilliams (1986),andpopularizedthrough

thepublicationof the seminalbook entitledParallel Distributed Processing (Rumelhart

and McClelland, 1986).

The development of the back-propagation algorithm represents a "landmark" in

neural networks in that it provides a computationally efficient method for the training of

multilayer neural networks. Although it cannot be claimed that the back-propagation

algorithm can provide a solution for all solvable problems, it is fair to say that it has put

to rest the pessimism about learning in multilayer machines that may have been inferred

from the book by Minsky and Papert (1969).
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In previous section (1.5). the multila,,er feedforx_,ard network architecture has

been described. The main property of this network is their ability to learn input/output

(I/O) relationships. These networks have been shown to be universal function

approximators. Adding a time series structure to the static network can convert the

network to dynamic system estimator. These features are described in the following sub-

sections.

3.6.2 Neural network as function estimator

The problem addressed is as follows:

Given a set of I/O data, [X_ X 2 ..- Xuo] r, [Yt Y2 "'" YN,] r and a

multilayer feedforward network, it is required to find a set of weights and biases that

would approximate the I/O relationship.

The f'LrSt question that arises is how good could this approximation be. The

research result mentioned in Section 3.6.1 shows that a multilayer feedforward network

with one hidden layer can approximate measurable and continuous functions to any

desired degree of accuracy. The second question is then how does one obtain the weights

and biases for this approximation. This can be accomplished by using a well-known

algorithm namely, back-propagation algorithm. Next section gives a brief review of the

back propagation algorithm used for tuning weights of neural networks in order to

approximate given I/O data.

3.6.3 Back-propagation algorithm
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The error signal at the output of neuronj at iteration n (i.e.. presentation of the n

train pattern) is determined by •

e j(n) = d j (n)- yj(n) (3.8)

1
Define instantaneous value of the squared error of the neuron j as - 2(n) and

2 ej

instantaneous sum of squared errors of the network is thus written as •

E(n) IS" e2= _ z__., j (n) (3.9)

where the set C includes all the neurons in the output layer of the network. Let N denote

the total number of patterns contained in the training set. The average squared error is

obtained by summing E(n) over all n and then normalizing with respect to the set size N,

i.e.,

1 _"

E_ = _E(n) (3.10)
r-I

Define the network internal activity level vj (n)which is produced at the input of

the neuron j as •

vj(n) = £W_(n)y,(n) (3.11)
i----O

where p is the total number of inputs (excluding the threshold) applied to neuronj. Hence

the function signal yj (n) appearing at the output of neuronj at iteration n is •

yj (n) = _pj (vj (n)) (3.12)
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The back-propagation algorithm applies a correction 51Vj,(n)to the ',,,eight

BE(n)
Wj,(n), which is proportional to the instantaneous gradient •

bWi, (n)
According to the

chain rule, the gradient can be rewritten as follows:

bE(n) bE(n)bej (n)_'j (n)bvj (n)

bWj, (n) bet (n)byj (n)bvj (n)bW_,(n)
(3.13)

Using Eq. (3.8) - Eq.(3.12) in Eq.(3.13) yields:

bE(n)
- ej (n)q_) (vj (n))y i (n) (3.14)

bW/, (n)

The correction AWj, (n) applied to W/_ (n) is defined by the delta rule:

bE(n) (3.15)
AWj,(n) = -0 _Wj, (n)

where rl is the constant that determines the rate of learning and is called learning-rate

parameter of the back-propagation algorithm. The use of the minus sign in Eq.(3.15)

accounts for the gradient descent in the weight space. Accordingly, the use of Eq.(3.14)

in Eq.(3.15) yields •

AWj,. (n) = -r/Sj (n)y, (n) (3.16)

where the local gradient _j (n) is itself defined by:

S i (n) = ej (n)q_) (vj (n)) (3.17)

When a neuron is located in a hidden layer of the network, there is no specified desired

response for that neuron. Accordingly, the error signal for a hidden neuron would have to

be determined recursively in terms of the error signals of all the neurons to which that

hidden neuron is directly connected; this is where the development of the back-
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propagationgets complicated.Suppose.a neuronj is directly connected with another

neuron k, then using the chain rule, yields:

6 (n) = ¢p; (v, (n)),_.., ¢5,,(n)W,,, (n) (3.18)
t

Now the relations that are derived for the back-propagation algorithm can be

summarized. First, the correction AW,_ (n) applied to the weights connecting neuron i to

neuronj is defined by the delta rule as:

correctionl=lParameter |.[gradient|.lof neuron j (3.19)

" 1_5 (n) ty i (n).) J to ) t, )

Second, the local gradient _s (n) depends on whether neuron j is an output node or a

hidden node:

1. If neuron j is an output node, ,Sj(n) equals the product of the derivative

rps (v s (n))and the error signal ej (n), both of which are associated with neuron j;

2. If neuron j is a hidden node, Sj (n) equals the product of the associated

derivative _p; (vj (n)) and the weight sum of the 8's computed for the neurons in the next

hidden or output layer that are connected to neuron j;

3.6.4 Back-propagation training

Minsky and Papert (1962) pointed out limitations of Rosenblatt's perceptrons.

One of these limitations was that there was no learning rule for a multilayer perceptron

architecture network. As mentioned in previous Section 3.6.3, the back-propagation

algorithm minimizes the root mean square (RMS) error with respect to the weights and
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biasesof thenetwork.The RMSerror is a functionof thedifferencebetv+eenthedesired

outputandtheactualnetworkoutputoverall trainingpairs.RRM error is givenby:

1 [ p ,v_
P243

where •

P is the number of input/output training pairs,

L is the number of layers'

N L is the number of nodes on the output layer L,

y_p is the output of the j'_ node of the L'h layer for the p" training pattern

When the minimization of the RMS error is performed, an update role for the

weights and biases is obtained. This update is applied to each input/output training pair.

The pattern notation p is dropped for simplicity. Thus, the update equation is:

AWe = r'/_j y_-' (3.21)

and

where •

.I. I _"_CI+ITTrI+I
cp/tv j)2..,oj ,'/_ , for I

j=l

"L(v_ )(y j y_ ), for 1=¢p/

L is the number of layers,

N t+_is the number of nodes on the layer I+1,

r I is the learning rate,

AWj_i is the change in the i '^ , j,h weight of the I a' layer,

/ ,t
yj is the output of the j_ node of layer l, (if/=0,then 3,j = Xj ),

(3.22)
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X, is the j:h element of the input node with a vector of length N O .

f • th

Wj, is the j , i 'helement of the weight of layer I with a matrix of

size N TM x N t ,

_0_j(*) is the derivative of the output function for the j'* node of

I

layer l with respect to v i .

The biases of the network can be viewed as a weight with an input of one, thus update

rule for the biases is the same as the weights with the input to the node equal to one. In

the rest of this thesis, all references and comments made about the weights will also apply

to the biases.

The weights and biases are typically initialized with small random numbers. The

rule used here is to initial these values with uniformly distributed random number

between -0.01 and 0.01 divided by the number of weights connecting to the node. This

normalization will avoid saturation of a node when the first few input are presented. If a

node saturates, the derivative at that point is about zero, and thus very small updating of

the weights occur. This initialization has proven successfully when training a network to

represent a dynamic system.

The back-propagation algorithm is a special case of a gradient descent algorithm

(as described in Section 3.6.3). It is an iterative nonlinear fwst-order unconstrained

optimization technique. The performance of the algorithm depends on the initial weight

values, the learning rule parameter, and the way how the weight updates are used.

There are two techniques in the use of the AW s. The first technique, called batch

learning, obtains the AW s for all of the input/output training pairs, averages them
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together,andthen changes all the weights of the netv, ork. The other lechnique, called on-

line learning, updates the weights after obtaining the AW for a single input/output pair.

The latter technique is more applicable to control systems work because one typically

does not have a predefined training set, but a set is generated in real-time while

controlling a plant.

The scale factor 1], which is known as the learning rate, adjusts the rate of

convergence of the network to the desired output. If the rate is small, the weight updates

are small and converge to a desired set slowly. If the rate is large, the weight updates are

large which could lead to oscillations.

3.6.5 Neural networks as dynamic plant estimator

In previous sections, neural networks are used to approximate static mappings, or

static I/O relationships. The same universal approximation property can lead to dynamic

plant estimation if an appropriate dynamic structure is added to the neural network. Since

neural networks are implemented using digital computers, discrete-time models of

dynamic systems will be convenient for analysis and design.

For a network to model a dynamic plant, a special structure must be added to the

network to capture the effects of the previous inputs and/or outputs or state information.

Several techniques, based on linear filter principles, have been proven to be particularly

useful. One technique assigns the input of the network to the states of the plant. This

works well when all the states of the plant are measurable. Another technique uses

recursion in the network by taking the output of a node and feeding it back to itself.

Different variations of this idea can be implemented such as, feeding the output of the
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node to the inputs of the other nodes on the same layer or feeding back the output of the

network to the input of the network. Making a recurrent network introduces some other

problems, such as, a more complex learning rule, slower convergence, and higher

sensitivity to stability in learning. Useful neural network models use just the input and

output data for control purposes. In this case, the neural network will act as an observer

and it will need to have available the inputs and outputs of the plant. To make the neural

network a dynamic plant estimator, dynamic structures based on typical linear system

identification models can be used. For example, the neural network input could be

augmented with:

--- past values of the plant's input, or

-- past values of the plant's input and output, or

--- past values of the predicted outputs and plant's inputs, or

--- past values of the predicted outputs and the plant's input/output

These four structures lead to neural network implementations of various plant models,

namely, Finite Impulse Response (FIR) model, Auto-Regressive exogenous (ARX)

model, Output Error (OE) model, Auto-Regressive Moving-Average eXogenous

(ARMAX) model respectively.

The choice of the model depends on the complexity of the plant to be modeled.

When the plant is stable, an FIR model maybe used. This model will require a tapped

time delay element for each increment of times for the length of the transient response. If

the plant has both low and high frequency modes this model iscomputationally slow. The

ARX model requires far less tapped time delays than the FIR model. When sensor noise
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u(n - 1)

u(n - n_)

y(n - 1)

y(n - 2)

y(n - da )

(3.23)

where n d is the number of input nodes associated with u not counting u(n), and d_ is the

number of input nodes associated with y(n-1).

For the following development, the neural network will have one hidden layer

containing several hidden nodes that use a general activation function tp(*). A single layer

is chosen because it has been shown that single hidden layer neural networks can

approximate a measurable set to any desired degree of accuracy. The output node uses a

linear output function for scaling the network. This function has a slope of 1.

The equation for this network architecture is:

d

vj(n) = E _VJs÷, X (n-i)}+ _ _Vls..,.,y(n- i)}+ bj
i=O i_l

(3.24)

and

where •

yn(n) = ,-,'_"_. icp, (vj (n))}+ b (3.25)

yn(n) is the output of the network at time n,

_j (*) is the activation function for the j,h node of the hidden layer,

ha is the number of hidden nodes in the hidden layer,
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W. is the weight connecting the j:* hidden node to the output node,

Wr, is the weight connecting the i 'Ainput node to the j,h hidden node,

b i

b

is the bias on the j,h hidden node,

is the bias on the output node.

It will be convenient to represent Fig 3.5 with a single block representation as

shown in Fig 3.6:

?(n .1) _[

ZI
u(n) -I

NNET :-- yn(n)

Fig 3.6 Block diagram representation of a time delay network

The delay nodes for the network are assumed to be contained within the block

diagram and are not shown as inputs. An alternative input may be defined to capture the

plant dynamics. Using the network output instead of the plan outi3ut for the delayed

inputs converts the static network into a recurrent network.

3.6.7 Training procedure for neural network

The network shown in Fig 3.6 is ready to be placed into its learning environment.

The plant to be learned is a non-linear dynamic plant. The plant is sampled by using a

digital to analog converter (D/A) at the input of the plant followed by a zero order hold

(ZOH) circuit. This signal is then feed to the plant. The output of the plant is then fed

through an analog to digital converter (A/D). This process is shown in Fig 3.7.
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I t5DL4 ZOH Plant .UD

Fig 3.7 Discrete plant

The objective of the network is to predict the plant's performance for a given input at

time t = nT, where t is the current time in seconds, n is an integer representing discrete

time, and T is the sampling interval.

The choice of T, the number of tapped time delays n a and d a , type of model (OE

or AMX) and the type of excitation signal are important variables for proper modeling of

the plant. The sampling interval T is chosen to satisfy Nyquist frequency estimated from

the bandwidth of the plant. Specifically one should choose T to be about 20 to 40 times

the highest frequency. To slow sampling will limit the ability to model the high

frequency modes. Too fast sampling can cause the modeling of a minimum phase plant to

be a non-minimum phase one. There is also a problem with the computer resolution. The

fast we sample the less the difference is on the output of the plant, y(n), between

sampling points. This difference determines the magnitude of the weights for the zeros

dynamics, that is the weights associated with u(n) and its delays, and the resolution of the

weights for the poles dynamics, that is the weights associated with y(n-1) and its delays.

The fast we sample, the smaller the wei__hts are for the zero dynamics and the smaller

resolution for the poles dynamics.

The choice of the number of delays na and da is based on the order of the plant

and additional delays required for capturing unmodeled dynamics. The choice of the
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number of hidden nodes is still an open problem. Some thumb rules can be used based on

experience.

The choice of whether the plant's output or the network's output is used for the

input is of particular importance. The use of the plant's output results in a static network,

the ARX model, and thus the learning algorithm is as defined in the previous section. The

problem with this configuration occurs when there is significant sensor noise. This could

introduce bias error in the network parameters (i.e., weights and biases). When there is

significant sensor noise, it is necessary to use the output of the network for learning. This

converts the network to a recurrent network (the OE model) and requires a recurrent

algorithm. Since recurrent learning algorithm for a general recurrent network is

computationally prohibitive a zero order approximation is typically used. The zero order

approximation is the same algorithm described in Section 3.6.4. Since this is an

approximation, the convergence is slower and less stable. It is recommended that this

configuration be used only when the former does not produce good results. In this thesis,

we assume the sensor noise is negligible, and therefore use the ARX model for training

the network.

The initialization of the weights is done as specified in Section 3.6.4 except when

the network is initialized with a nominal linear plant model. Then a correlation of the

networks' weights and a discrete linear model of the plant is needed.

Training a network to be a dynamic system estimator is accomplished in the same

manner as in Section 3.6.4. The training procedure can be described as follows. First, a

forward pass through the network process the input u(n), y(n-1), and their past values,

giving the current output y(n). Second, the error signal is formed by subtracting the neural
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n rrur_A" djt J

v (n+k)= _W ,u(n+k-i)+ ZtWs.,,.._,yn(n+k-i))+ _(Wr,o.-,Y(n+k-i))+b j
l=O t=l _=t,+-1

(3.27)

The second summation of Eq.(3.27) introduces the predicted outputs. This feeds

back the network output, yn, for k or d,_ times, whichever is smaller. The last

summations of Eq.(3.27) handles the previous values of the plant output, y.

Here is an example demonstrating the network prediction:

Consider a network with input nodes consisting of u(n) and two previous inputs

(i.e., n a = 2 ), three previous outputs (i.e., d_ = 3 ), two hidden nodes (i.e., h s = 2), and

one output node.

Suppose that a 2-step prediction needs to be found, that is, the network needs to

predict the output at times n+l and n+2. Fig 3.9 gives the pictorial representation of how

this is achieved.
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u (n +2) u(n+l) u(n)

yn(n+l)

,rcdiction output

y(n) y(n-l)

__..._._ 2nd prediction output

yn(n+2)

Fig 3.9 Network prediction for k=2

The example above depicts a prediction of the plant output for k=2. To produce the

output )_(n+2), inputs u(n+l) and u(n+2) are needed. The prediction process is started at

time n, with the initial conditions of [u(n) u(n-1)] r and [y(n) y(n-1) y(n-2)] rand

the estimated input u(n+l). The output of this process is yn(n+l), which is fed back to

the network and the process is repeated to produce the predicted output yn(n+2).

In summary, it was shown in this chapter how a neural network can be used as a

predictor for a dynamic system. It will be shown in the next chapter how this predictor

configuration of neural network can be effectively used in GPC algorithm for control

purposes.
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CHAPTER 4 Neural Generalized Predictive Control (NGPC)

In previous two chapters, necessary theoretical background of predictive control

and neural networks was given. This chapter gives the analytical and experimental

framework of GPC and NGPC for control of dynamic systems.

The first part of this chapter is devoted to the derivation of a stability result for a

GPC controller which gives the necessary conditions on the tuning parameters of the

controller for closed loop stability. In the latter part, different control architectures are

given for neural network-based generalized predictive control of linear and nonlinear

systems. For both cases, the control strategies are discussed for two different scenarios:

(1) when the plant model is known exactly, and (2) when the plant model is known

approximately. For linear systems, the case of parametric uncertainty is addressed in

more detail. It is shown that the neural network can be used simultaneously as a

'predictor' and as a adaptor. The function of adaptor is obtained by online training and

correction.

4.1 Stability of GPC control law

From the previous discussion in Chapter 2 regarding GPC structure and the

control law, it can be seen that the choice of GPC's parameters: Nj, N,, N_ and _ play

important role in the stability and performance of the closed-loop system. Following

theorem gives conditions for selection of GPC tuning parameters, which can ensure the

stable tracking behavior of the plant. The performance function used in a simple
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performancecriteria _vithoutpenaltyon thecontrol input.Note that theconditionsin the

theoremareonly sufficient conditions.

Consideraplant

y(k) - B(q-I) u(k - 1)
A(q-I)

and performance criteria: J = _[y,, (k + i) - y_ (k + i)]2, (4.0a)
i=N_

subject to Au(k + i - 1) = 0, N, < i < N 2 . (4.0b)

Theorem 4.1 Consider the cost function given by Eq.(4.0a), except the penalty term

related to the control increments, and constraint given by Eq.(4.0b). If the GPC tuning

parameters are chosen such that, N 2>n a+n 8+d+l, NI =n 8+d+l, N,,=n A+I,

then, in the absence of disturbances and uncertainties (parametric and modeling),

minimization of Eq.(4.0a) under constraint (4.0b) yields a controller that drives output

y(k) to follow the reference trajectory given by Ay,_(k+i)=O (i>1) in n m+d+l

samples.

Proof.

For the sake of convenience it is assumed in the proof that d = 0. Further, note

that because disturbances and modeling errors are absent, the ,_(k)term in (2.9) will be

zero. From Eq. (2.9):

A( q-I ) y(k ) = B(q -I )u(k - 1) =_
(4.1)

y( k ) = -aj y( k - 1) ..... a,,,, y( k - n a ) + bou( k - 1) +... + b,, u( k - n s - 1)

Rewriting Eq.(4.1) with k substituted by k+n.,_ +n_ +2and both sides multiplied by

A(= 1- q-_ ) yields:
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Ay(k+n, +n 8+2)=

-alAy(k+n a+n B+I) ..... a, Ay(k+n a+2)

+boAu(k +n., +n a +l)+...+b, Au(k +n_ +1)

Now, the plant output settles in n 8 +1 samples to a reference trajectory specified by

Ay d (k + i) = 0 if the following conditions are satisfied:

y(k + i) = w(k + i) i = n B + 1 (4.2)

Ay(k + i) = 0 n B + 2 _<i _<n A + n B + 1 (4.3)

Au(k+i) =0 n A +1 <i-<n A +n a +1 (4.4)

The condition of Eq.(4.4) is satisfied if N, = n A + I (remember that, by definition (2.25),

Au(k + i) = 0 for i > N, ). The conditions of Eq.(4.2) and Eq.(4.3) are satisfied if:

y(k + i) = Y,t (k + i) n n + 1 <_i _<n,_ + n 8 + 1 (4.5)

It remains to show that Eq.(4.5) holds if N 2 =n A +n a +1, N_ =n a +1, model is

correctly estimated (i.e., A = ,4,B =/_), d = 0, and _(k) = 0.

Now cost function (2.24) becomes:

nA_ +1J = [_(k + i)- )'a(k + i)]2 (4.6)

i--eIj+l

The minimal value of Eq.(4.6) can be obtained by setting:

_(k + i) = y_ (k + i) n 8 + 1 < i < n A + nj + 1 (4.7)

Now the question to be answered is: is it possible to obtain a controller output sequence

such that Eq.(4.7) can actually be satisfied? In order to show that there is a controller

output sequence over the control horizon that yields Eq.(4.7), Eq.(4.6) is rewritten in the

matrix notation as:
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where:

J = [.9- y,, ]"[.9- Y,, ] + ;._T_

_' = [_,'(k + n B + 1),..., _'(k + n a + n s + 1)] r [_'] = (n a + 1) x 1

ya=[ya(k+na+l),...,ya(k+na+nB+l)] r [yd]=(na+l)xl

_=[u(k)-u(k-1),...,u(k+na)-u(k+n a-l)] r [u]=(n a+l)xl

Further, Eq.(2.55) must be satisfied. Now recall the prediction model Eq.(2.22) (with the

disturbance being zero):

_, = au + H(t + Fc (4.8)

where [u] = N 2 x I = (n a + n a + 1) x 1. It was shown in Section 2.6 that because Eq.(4.4)

must be satisfied, the vector ucan be written as:

u= M'O + N_

where matrix M and vector u is given by:

"_=[u(k),...,u(k+N, -1)] T [O']=N xl

Assuming that Eq.(4.4) holds, Eq.(4.8) can be rewritten as:

_' = GM-d + GNEt + HE/+ Fc (4.9)

Now the optimization problem is reduced to solving N, unknowns

(u(k),...,u(k+N,-1)) from N, equations, ff the matrix inverse that is involved in

solving u(k),.-.,u(k + N,, - 1) from Eq.(4.9) can be calculated, a unique solution exists

and hence Eq.(4.7) is obtained when Eq.(4.6) is minimized. By using the assumption that

the plant is correctly estimated and that there are no disturbances, Eq.(4.7) becomes:

y(k+i)=yd(k+i) ns+l<-i<-na+na+l
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and hence, the condition Eq.l,4.5) is satisfied. Further, Eq.(4.5) is also satisfied if

N, >n a +n a +1.

The proof with d * 0 is identical to the proof above in which n 8 is replaced by

n a +d.

Next, a stability result is presented which considers the cost function used in GPC

algorithm which differs from the one used in the earlier result in the term used to penalize

control increments over the control horizon.

In order to prove the next result a state-space approach is used for convenience, a

discrete time state-space description for a linear system is given by:

x(k + 1) = Ax(k) + bAu(k)

y(k) = e'rx(k)

where x(k) is the state vector, A is the system matrix, b is the control influence matrix,

and e r is the output matrix. The next theorem gives the conditions for closed-loop

stability that need to be satisfied in making choices of GPC horizon parameters. It is

assumed that the system is controllable and the transition matrix of the system is non-

singular. The assumption of controllability is relaxed to stabilizability in latter stage.

Theorem 4.2 The closed-loop system under finite-horizon GPC control is stable if:

1. the n-state system model (A,b,e) is stabilizable and detectable, and if

2. N, =N, >n, N 2-N_ >n-l,and Z--+0.

Proof

Before the proof of this theorem can be addressed, some additional preliminary

results are in order. The result are given in the following five lemmas.
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Lemma 1 If the pair (A,b) is completely controllableand A is non-singular, then for

N > n with:

koT = _b T (A T ).v Wi_A.V.,

any

where

bb T A T);=

the feedback control law given by Au(t) = -krx(t) is stabilizing.

Proof of Lemma 1

Consider the system

x(t+l) = _rx(t)

= A -A _*l bbr (Ar)_' W_ 1
_t

and the Lyapunov function x T (0WNx(t) • Then it can be shown that

From the definition of W N and the matrix inversion lemma, the quantity _WN q_r is

negative semidefmite. It now remains to show that there exists no initial state such that

the Lyapunov function is zero for all time or in turn that there exists no state x 0 such that

x_iAN+lb is zero for all i. From complete controllability, it implies that:

TA"*I[b,Ab, O.Xo

Recall that complete controllability of the open-loop system (A,b) implies complete

controllability of the closed-loop system. This in turn suggests that there exist no state x 0
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suchthat the Lyapunov function can become zero for all time. ,:l:, is therefore a strictly

stable matrix and a similarity transformation using the matrix A +1 completes the proof.

The next set of lemmas removes the restriction of non-singularity of A and

complete controllability.

Lemma 2 ff the system (A,b) has a single input and is completely controllable, then the

state feedback law of Lemma 1 stabilizes the system irrespective of the non-singularity of

matrix A.

Proof of Lemma 2

It is straightforward to obtain a similarity transformation such that

['o0]S'IAS = A1

where A, is nonsingular and A_ has only zero eigenvalues. It is then possible to show by

direct substitution that the control law of Lemma I implies feedback only about the states

associated with the non-singular part, as A+ is nilpotent.

The next Lemma establishes the link between the Kleinman controller and the

predictive controller using the state-feedback, where the gains are computed using the

appropriate Riccati equation.

Lemma 3 The control law based on iterations of the Riccati equation below and the

Kleinman controller are equivalent if:

i. N, =N I >n and N 2-N, >n-1

ii. Q(i) = ee r for i > N_ and 0 otherwise;

iii. A(i) = very large, for i > N. = N_

= _ = e, vanishingly small, otherwise.
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iv. P(t + N,) = CC T

V, Fori=N 2-1to l:

P" (t + i) = P(t + i + 1) -
P(t + i + l)bbrp(t + i + 1)

t(i) + brp(t + i + 1)b

P(t+i) =Q(i)+ ATp "(t +i)A

k r (t) = (;t + brp(t + l)b)-' bvP(t + I)A

Au(t) = --k T (t)x(t)

Proof of Lemma 3

For the first N: - N I iterations of the algorithm above, the rank of the matrix P

increases progressively from 1 to n (its maximum rank) if N 2 -N_ > n-1. This

corresponds to the range of points over which the future system errors are included in J.

P(t + Ni) is therefore of full rank. For the next set of iterations i < N, and the Riccati

updating equation is:

bb r
AP "1(t + i)A r = P'l(t + i + 1) +

which by the final iteration gives

H -: bb r r

A_-IP(t + 1) -I (At) u'-I = P'l(t + N I ) + _A _---_-(A )i
i---O

For 7_vanishingly small:

u-2 bb r At) _ WN,-2
AN'-IP(t + I)-' (Ar)U'-I = y AJ _--( =

i=0
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It is necessary to show that this leads to the Kleinman law, for which W_ can be

written as:

I A.bb r (A r )_ )-'W;__= W.._ +

Applying the matrix inversion lemma, the Kleinman feedback gain becomes:

kor = (;t + brR'lb)-lbrR'lA

where WN. 1 = ANR'I(AT) _, R "1 =P(t+l). It is then easy to see that this is the law

based on the Riccati iteration and N = N, - 1. This implies that a sufficient condition for

stability is that N_ - I > n or N, > n.

In the next Lemma, it shows that in the noise-free case there exists a direct

mapping between the state-feedback controller and the equivalent input/output controller.

Lemma 4 The input/output GPC control calculation and the optimization using Riccati

equations and the state-feedback are equivalent.

Proof of Lemma 4

Consider the GPC calculation for N_ = N 2 = N, = 1. The feedback control law is given

by:

g' (-_(t+l) lt))Au(t)= 2
g, +_

which is equivalent to

by

(N 1 = I,N._ =2,N. =2)

Au(t)= - (2 + brccrb)-' brcc r Ax(t)

inspection as _(t+l) lt) =c'rAx(t). For two-stage optimization we have
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g,g2 g( +'AJLAu(t+I) j g,JL3,(t+21t) "

It is straightforward to show that

x(t+l)

Au(t + l) = -(_, + brccVb) -' brcc r AiAx(t) + bAu(t)i

and that

A_(t) = -(t + bTpb) -_bVPAx(t)

where

for the two-stage optimization. It is easy to show that the next

repetitions of the equations above and induction completes the proof.

P = cc "r + ATccTA _ Arcc'rb(t + brccVb)-lb'reeVA

It can be seen that the equations above are none other than the Riccati equations

stages are simply

It can be also be demonstrated that the mapping between the state-feedback gains

and the coefficients of the input/output controller is given by:

I[y t-n+l ][iAu(t)=--R T 0 -1 i -0 -1 :

y(t)

where O is the observability matrix.

°l[_u('-n'1 [_,
"- i + i: 1,]L lr /• 0 Au(t

"o

• .. g,jLAu(t-1)

Lemma 5 The stability characteristics of GPC control are unaffected by the presence of

common factors in the pole/zero polynomials of the system model.

Proof of Lemma 5

Consider the system

A(q-' )Ay(t) = B(q-' )Au(t - 1)

If the model of the system is given by polynomials with common factor a(q-: )"
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A(q-' )ct(q-' )Ay(t) = B(q-' )a(q-1 )Azt(t - 1)

then the Diophantine equation for j-step-ahead predictor becomes:

1 = EcAty.A + q-iF c

Comparing this with the Diophantine identity without the common factor a(q-I ) :

1 = EAA+q-JF

aE = E- q-Jr

Fc =rAA+F

and the output at time t+j can be written as:

y(t + j) = EBAu(t + j - 1) + Fy(t)

Note that the terms in the predictor equation are the same as for the case of no commom

factors and the g-parameters will also remain the same as before. This in turn implies that

there will be no singularity in the GPC control calculations in the presence of common

factors and that the stability characteristics are unaffected.

Back to proof of Theorem 4.2

The above Lemmas combined provide the proof of Theorem 3.2. Hence for a

completely controllable and observable plant, GPC control law provides stability if

N, = N I > n, N 2 - N I > n - 1 and A is vanishingly small.

4.2 Neural Generalized Predictive Control (NGPC)

4.2.1 Introduction

To use GPC framework for the real time control of non-linear plants, a nonlinear

black box estimator is needed. This 'black box' model should be able to estimate the
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nonlineardynamicson line. In addition, the cost function shouldbe integratedwith the

black boxmodelpredictorfor improvedrealtime performance.

As shownin Chapter2, GPC algorithm relieson the modelof the plant and, in

somecases,of the disturbances.Even thoughthereare sometechniquesfor modeling

disturbancesand uncertainty,it is not possibleto obtain an exact model, which can

predicttheplantoutputaccurately.In general,eventhebestavailablemodelingtechnique

can yield the plant model that has uncertaintiesand errors.This is especially true of

nonlinearsystemswhereoftentimesmodelingis anextremelydifficult task.GPC,being

model-basedcontrol technique,requiresa modelof the plant for outputprediction. In

caseof nonlinearsystems,availability of sucha modelcouldbeaproblem.Useof neural

networkcanhelp solve this problem. Neural network can be usedto model linear or

nonlinearsystem.In particular,for nonlinearsystems,whosemodelis notknown, neural

networkcanbeused asonline identification tool in concurrencewith its function as a

predictorfor GPC.

As it is shownin Chapter 3, multilayer neural networks offer the properties and

capabilities that will meet the controller requirement discussed above. Especially, the

properties of neural networks that are attractive in GPC control are: (1) nonlinear

mapping, (2) online learning ability, and (3) online adaptivity. Using neural networks as a

predictor in GPC enriches the intelligence of the controller behavior, which results in the

increased robustness in the system's stability and performance.

Next, an NGPC controller architecture is presented which is used to obtain robust

control of uncertain dynamic systems.
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4.2.2 Basic NGPC algorithm

In this section, a basic NGPC architecture is presented. The NGPC algorithm is

similar to the GPC algorithm where linear predictor model is replaced with a neural

network model. To use a neural network as a plant predictor, a training procedure needs

to be established. In the controller architecture presented, neural network is integrated

witl_ the cost function minimization routine. The cost function to be minimized is the

same basic cost function used in conventional GPC algorithm.

The NGPC framework consists of four components, the plant to be controlled, a

reference model that specifies the desired performance of the plant, a neural network that

models the plant, and the Cost Function Minimization (CFM) algorithm that determines a

sequence of future inputs needed to obtain a desired plant performance. The NGPC

algorithm consists of the CFM block and the neural network block. Fig 4.1 shows the

block diagram of the NGP_ system.

r(n) _ _ Cost FunctionMinirniratinn

NGPC Algorithm
................................................................................... I

......... ............,o,o,
/ Mndo! 1

Fig 4.1 Block diagram of NGPC

The NGPC algorithm works as follows: reference input r(n)is presented to the

reference model. This reference model produces a tracking reference signal, ym(n),
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which is usedas the desiredoutput and is passedon to the CFM block. The CFM

algorithmproducesacontrol signal,which couldbesentto theplant aswell asthemodel

of theplant astheinput signal.The double-poledouble-throwswitch is set alternatively

to feed the plant or the neuralnetwork model. The switch is set to the plant whenthe

CFM algorithmhasconvergedto the best input sequence,u(n), which minimizes the

specified cost function. Between the samples the switch is set to the neural network plant

model. The CFM algorithm uses this model for prediction of the future outputs which are

needed in the calculation of the future control input, u(n + 1). Once the cost function is

minimized and a sequence of future control input is obtained the first input is passed on

to the plant and the process is repeated for the next time constant.

4.2.3 NGPC cost function with actuator constraints

One of the advantages of GPC or NGPC is that the real plant constraints can be

easily taken into account in the cost function. One commonly occurring actuator

constraint is the saturation which limits the amplitude of the control signal. Adding the

input constraint function to the basic cost function results in:

J = ___[ym(n + j)- yn(n + j)12 + _ _(j)[Au(n + j)I'-
i=N_ j=l

 [u(n s s 41
+ t -

+j)+r/2-b r/2+b-u(n+j) r

where

Au(n+ j) =u(n+ j)-u(n+ j-l),

N_ is the minimum costing horizon,
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N 2 is the maximum costing horizon,

2(j) is a control-weighting sequence,

s is the sharpness of the constraint function,

r is the range for the constraint, and

b is the offset of the range for the constraint.

N_ specifies the dead time of the plant and N 2 is the horizon. This cost function

has three parts. The first part minimizes the error between the model, ym(n), and the

neural network, yn(n). The second part minimizes the rate of change for the inputs,

u(n + j), with X as the weighting factor. 2 can be tuned to change the penalty on the

control input. The input constraint guarantees that the control input will not saturate the

actuator. The parameters s, r and b characterize the sharpness, range, and offset of the

input constraint functions, respectively. The sharpness, s, controls the shape of the

constraint function.

The algorithm used to minimize the cost function is the key to the real-time

control. Several algorithms are available, however, most of them have been proven to

have inadequate speed for the real time application. The next section develops a real-time

minimization procedure based on the Newton-Raphson optimization algorithm, which

has been found to give the fastest convergence over other existing methods.

4.3 Cost Function Minimization (CFM)

In Section (3.1), the GPC algorithm has been described with the basic cost

function (3.2). When the plant model is represented by a neural network, any linear

minimization technique will not work because of the inherent non-linear properties of the
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neural network model. In such a case, the use of a non-linear iterative solution is

necessary.The existing iterative techniquescan be divided into two groups:gradient-

based techniquesand nongradient-basedtechniques.Only one of the gradient-based

techniques has quadratic converging algorithm. This algorithm, namely, Newton-

Raphson,is the fast convergingalgorithm when measuredin termsof iterations.This

algorithm could be made faster if the parametersarecomputationally inexpensiveto

calculate. It is critical for real-time control that the minimization is done efficiently.

Presentedhere is the Newton-Raphsonsolution for the augmentedcost function

minimization problemthatis abouta orderof magnitudemoreefficient thana first order

gradient-basedalgorithm.

4.3.1 Brief review of Newton-Raphson algorithm

Newton-Raphson is a quadratically converging optimization technique for solving

nonlinear equations of the form f(x) = 0 where f(x) is nonlinear differentiable function

in the space of x e R". The derivation of the Newton-Raphson algorithm is as follows:

It starts with initial guess for the solution x, say x.. Then a Taylor series

expansion of f(x.._) is obtained:

. _ 1 -f(x.÷,)= f(x.)+ f (x.)(Ax)+ f'(x.)(Ax) 2 +_f (x.)(Ax) 3 +...

where

Ax = x.. -x. (4.11)

(4.10)
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Taking the first two terms, f(x._ 1) --f(x.)+f(x.)(A,:), and assuming that

f(x.._) = O. solve for A,c and get Ax =
f(x.)

• Substituting this into Eq.(4.1 1) yields

the solution x.÷_ = x.
f(x.)

To find the local extremum of a function, say g(x), the first derivative of g(x) is

taken with respect to x and set it to zero, i.e., dg(x) = O. Thus the update rule for the
dx

extremum is x,. I = x,
g'(x.)

g'(x.) "

4.3.2 CFM algorithm

Minimizing the cost function J with respect to the sequence

[u(n+l) u(n+2) ... u(n+Nz) _, denoted by U, is accomplished by setting the

Jacobian to zero and solving for U. Using Newton-Raphson method, J is minimized

iteratively to determine the optimum U. An iterative process yields intermediate values

for J which are denoted by J(k). For each iteration of J(k), an intermediate control

input vector is also generated and is denoted as:

[ u(n+l) ]

u(k)=lu(n+2)l:

Lu(n+ )]

The Newton-Raphson update rule for U(k + 1) is:

, k =1,2 .... ,#of iterations.

82



3"j
U(k + 1) = U(k) - (3U 2(k)

(4.12)

where the Jacobian is denoted as

3J

3u(n + I)

Ou(n + N 2)

and the Hessian is denoted as

3_J
_(k) =
OU2

3_J 32J
°°.

3u(n + 1) z 3u(n + N2 )Ou(n + 1)
• ,. :

b2J O2J
,..

3u(n + Nz)3u(n + I) 3u(n + N2) 2

To use LU decomposition to solve for the control input vector U(k + 1), Eq.(4.12)

is rewritten in the form of a system of linear equations, Ax = b. This results in •

3zj 3j

OU 2 (k)(U (k + 1) - U (k)) = - 3---U(k) (4.13)

where

O2J (k) = A,
3U 2

3.I
- _(k) = -b,

3U

U(k + 1) - U(k) = x

After x is calculated, U(k + 1) is solved by evaluating U(k + 1) = x + U(k). This

procedure is repeated until the percent change in each element of U(k + 1) is less than

some _ . When solving forx, calculation of each element of the Jacobian and Hessian is

needed for each Newton-Raphson iteration. The h 'h element of the Jacobian is:
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aJ

au(n + h)
u, _ .,, aAu(n + j)

- 2_[ym(n+j)-yn(n+j)]+2j=_,, ,/=l&(j)[Au(n+ ;)l_u(n+-h- )

[ -s+ 6(h, j)
i=, (u(n+ J)+r/2-b)2

+

l

s .| h=l,.. N 2
(r/2+b-u(n+ j))2 j ' "'

The term
aAu(n + j)

au(n + h)
when expanded and evaluated can be rewritten in terms of

the Kronecker delta function 1 as,

au(n + j) au(n + j - 1) = _(h, j) - S(h, j - 1)
au(n + h) au(n + h)

The m 'h ,h '_ element of the Hessian is:

a2j ._ 2_I0yn(n + j)_yn(n+ j) ayn(n+ j)ayn(n+'j? [ym(n + j) - yn(n+ j)]}
au(n + m)au(n + h) J-u,l_ au(n + h) au(n + m) au(n + h)

., 3yn(n + j) 3yn(n + j) _
+ 22.u&(j),_yn(n+...7 ayn(n+ j) +_u(n+ j)_----

j--1 [au(n+m) au(n+h) au(n+m) au(n+h) J

[ 2s+ (5(h, j)(5(m, j) "(u(n + j) + r/2 -b) 3
/=1

2s ]+ (r/2+b-u(n+j))3 '

h = 1..... N 2

m = 1.... N 2

Again, using Delta function, yields:

aAu(n + j) aAu(n + j) = [6(h, j) - 6(h, j - l)Id;(m, j) - S(m, j - 1)]
au(n + h) ' au(n + m)

The
a_,u(n + j) aAu(n + j)

au(n + h) au(n + m)
always evaluates to zero.

1, if h=jHere the Kronecker Delta function is defined as S(h, j) = 0, if h _ j
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To evaluate the Jacobian and the Hessian, the first and second derivatives of the

network outputs with respect to the control input vector are needed. The elements of the

Jacobian are obtained by differentiating yn(n + k), with respect to u(n + h), i.e.,

_yn(n + k) _ z..,_W/ _q_j (v j (n + k ))
Ou(n + h) i=t Ou(n + h)

(4.14)

bqgj (vj (n + k))
Applying the chain rule to the term

bu(n + h)
results in:

3q_j(vj(n+k)i b%(v,(n+k)) _vj(n+k)

bu(n+h) Ovj(n+k) Ou(n+h)
(4.15)

where
3_p j(v /(n + k)) .

Is the derivative of the output functions and
bvj (n + k)

, ,_k.,t,) Oyn(n + k - i) t_I (k - i,1)
_vj(n+k)_ _Wj.,+,S(k-i,h)+ Z wJ.i÷,,._ _u(n+h) (4,16)

In Eq.(4.16), the step function, tS_, was introduced to the second summation. This

was added to point out that this summation evaluates to zero for k - i < 1, thus the partial

derivative does not need to be calculated for this condition. The elements of the Hessian

are obtained by differentiating

u(n + m), resulting in:

Eq.(4.14), Eq.(4.15) and Eq.(4.16) with respect to

32yn(n + k )

bu(n + h)_u(n + m)
=_Wj _2tpj(vj(n+k))

i._t _u(n + h)_u(n + m)
(4.17)

b2q_/(v/(n+k)) bq_j(vj(n+k)) b2vj(n+k)

bu(n+h)Ou(n+m) v/(n+k) Ou(n+h)_u(n+m)

O 2q_/(vj (n + k)) bvj (n + k) Ovj (n + k)
-t (4.18)

vj (n + k)" bu(n + h) bu(n + m)
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CHAPTER 5 Simulation and real time control experiment

5.1 Introduction

In the previous

Predictive Control was

chapters, background of Neural Network and Generalized

given. The last chapter gave introduction to the control

architecture for Neural network-based Generalized Predictive Control methodology. A

real time implementation of NGPC was also discussed. This chapter is devoted to the

simulation and experimental validation of the robust control strategies using NGPC

techniques developed in Chapter 4. For simulation purposes, two example systems are

chosen. An experimental validation is obtained for one of these systems for which

laboratory setup was possible. The simulation and experimental results show that an

NGPC controller framework has great potential for application in robust control of

unstable and non-minimum phase linear and nonlinear systems. It is shown that NGP C is

very robust to parametric uncertainties and unknown disturbances.

5.2 Pitch axis control of a fighter aircraft

As a first example, longitudinal model of an F-16 fighter aircraft is considered

[ 17]. The problem addressed is that of controlling the pitch rate of the aircraft in the

presence of parametric uncertainties. The design model is obtained from a 13 th order

transfer function model derived for straight and level flight conditions. The poles and

zeros of this 13-state transfer function show that cancellation of at least the first six digits

has occurred, so the final simplified transfer function can be expected to be a good

approximation of the original 13-state transfer function. The first three poles are at the

origin and represent an integration of the velocity components that lead to the north, east,
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and directional states.Thesepoles arecanceledby the zerosat the origin. The poles

correspondingto dutch roll, roll mode,andspiral mode arealsocanceledby the zeros.

The altitude pole is not exactly at the origin, and is thereforenot canceledprecisely

becauseit is coupledto the longitudinaldynamics.The enginepole is canceledexactly

becausethe engine-lagmodel is driven only by the throttle input. The remainingfour

poles (phugoid and short-periodmodes)and three zeros yield the following transfer

function:

q = - 10.45s(s + 0.987 l)(s + 0.02179) deg/sec (5.1)
S e (s + 1.204 + jl.492)(s + 0.007654 + j0.07812) deg

The elevator to pitch-rate transfer function has a dc gain of zero (because of the

zero at the origin), indicating that a constant elevator deflection will not sustain a steady

pitch rate. If the phugoid poles are canceled with the zero at the origin and the zero at s=

-0.02, a short-period approximation of the transfer function is obtained:

q _ - 10.45(s+0.9871) deg/sec (5.2)
Se s + 1.204 + jl.492 deg

Uncertainty modeling:

For simulation studies, the short-period approximation (5.2) will be used as the

design model. The difference between the full order longitudinal model and the short-

period approximation can be treated as model uncertainty. This type of uncertainty,

which represents unmodeled part of the dynamics, can be best represented as an additive

uncertainty. Another kind of uncertainty, which arises due to incorrect knowledge of the

system parameters, is called parametric uncertainty. In the simulation experiments it will
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beassumedthat theshort-periodapproximationmodel is fairly accuraterepresentationof

the longitudinaldynamicsexceptthat the short-periodfrequenciescouldvary betweena

known range.The uncertaintyof this typecanbecharacterizedasparametricuncertainty.

As explained in Chapter4, suchuncertaintycan be dealtwith in NGPCarchitectureby

usingthemethodologygivenin Section4.3.

Theproblemaddressedis thatof robusttrackingof a referencepitch ratesignalin

the presenceof uncertaintyin the short-periodfrequency.It is assumedthat the short-

period frequencycan vary between + 30% from its nominal value. NGPC controller

architecture used for this problem is described below.

r 1

r(n) eferenc Cost Function 1 Plant
L_wn,

/Mnde3 I i I MinimiTnticm

..NGPC Online Traini_ng__A..lgorithm

+

)

--I

Fig 5.1 NGPC online training block diagram

Controller structure

The block diagram of the closed loop system is as shown in Fig 5.1. The neural

network used for prediction is configured such that it embeds the nominal plant model by

using fixed weights on the appropriate hidden layer connections (refer Fig 4.2). The

activation function of the first hidden node is linear with unity slope. The second hidden
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setting of GPC tuning parameters to the values recommended by Theorem 4.2 assures the

closed loop stability. The stability is robust to parametric uncertainties.
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Fig 5.3 Case b): +30% uncertainty in o9n of the plant, no on-line adaptation

Case c): +30% uncertainty in con , online adaptation;

For this case, the set-up is similar to case (b) except that the neural network model

predictor is allowed to learn the plant dynamics online to compensates for the

uncertainty. That means, the weightings on connections to and from second hidden node

are allowed to adapt online through back-propagation learning. This has an effect of

neural-network model asymptotically converging to the actual (correct) plant model and

thereby improving steady-state performance. Fig 5.4 clearly shows this behavior. Note

that it takes only half a cycle of the doublet for model to adapt.
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Fig 5.4 Case c): +30% uncertainty in 09, of the plant, on-line training is on

Case d): -30% uncertainty in co,, no online adaptation;

This case is similar to case (19) except that the uncertainty in short-period

frequency is taken to be -39%. A similar result as case (b) can be observed in Fig 5.5.

Case e): -30% uncertainty in co., online adaptation;

This case is similar to case (c) except that the uncertainty is -30% in the short-

period frequency as opposed to +30%. As expected, the simulation results for this case

parallel to these from case (c) and are given in Fig 5.6.
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For all the simulationsshown in Fig 5.2 through 5.6 the choice of the NGPC

tuningparameterswasNI= 2, Nu= 2, and N2= 3. Another way to improveperformance,

in additionto online adaptation,is to tuneGPCparameterssuchasN I, N2 andNu. It is

observedthat increasingprediction horizon N2 can yield better performancein many

applications. In this examplealso it was observedthat increasingN2 led to better

performancein general(seeFig 5.7 through5.11)for all casesexceptcase(c).
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0.00004
£
,,h 0.00oo3
"0

_ 0.00002

O.00001

Increasing N2 results in smaller steady state
tracking error

0 5

vvvvvvvvv
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Fig 5.7 Steady-state error performance: Am,, = 0%, no adaptation
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Fig 5.8 Steady-state error performance: Aco. = +30%, no adaptation
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5.3 Control of slewing link with flexible joint

As a second example, the control of slewing link with flexible joint is considered.

Fig 5.12 and Fig 5.13 show the schematic of the apparatus and the geometry of the

system, respectively. The apparatus consists of a rotating rigid link with flexible joint

(See Picture 5.1). The link is housed on a rectangular box and is driven by a DC motor.

The length of the link can be adjusted using anchor points. The joint flexibility is

achieved via two identical springs that are anchored to the base body at one end and to

the link at the other end. By changing the springs or the anchor points, joint stiffness can

be varied. A small extension can be attached at the end of the main link to change the

link's inertia properties. The input to the system is the voltage applied to the motor that

drives the joint. The output is the angular displacement of the ]ink with respect to the

inertial frame.
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The rest of this chapter is arranged as follows:

In Section 5.4, derivation of a mathematical model is given for the slewing link

with flexible joint. A linearized state space as well as transfer function model is obtained.

In Section 5.5, an experimental set-up is given and different control problems are defined.

In Section 5.6, simulation as well as experimental results are given. Finally, in Section

5.7, discussion of the results and concluding remarks are given.

5.4 Mathematical modeling of a rotary flexible joint system

5.4.1 Derivation of the joint stiffness

Consider the system geometry shown in Fig 5.12. The link is displaced from the

zero angular position such that the spring #1 is stretched to length L1 and the spring #2 is

stretched to length L2. From Fig 5.13, we have the following relationships:

Lt_ = r - R sin(0)

L2, = r + R sin(0)

L_,.= L2,. = Rcos(0) -d

Lk)

where

r is the base body anchor point along X-axis,

R is the link anchor point along Y-axis,

d is the base body anchor point along Y axis.

Let L be the initial unstretched length of the spring,

generated by the extension of the spring to length L i is given by:

F, = K(L, - L) + F,

then the spring force
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wherei= 1 for spring 1 and i=2 for spring 2, and F, is the restoring force on each spring.

This means the spring will not stretch unless the force F, is applied. Note that it is

assumed that the two springs have identical stiffness K and restoring force F,.

The force generated by each spring can be decomposed into their x and y

components as shown in Fig 5.12:

F,, = P,Z ,I

F,, = F,Z%/

F, ,. = F, L, ,. / L 2

The restoring moment due to these components is given by:

M = Rcos(O)(F2_ - F_,) - Rsin(O)(F b, + F2s)

The above equation is nonlinear and can be linearized about the zero angular

position to obtain a linear estimate of the joint stiffness:

K swFr = dM le=o
dO

The complete expression for Ks.nr r is given below:

2R (DS/2d
Ksrrr F = Ds/2 [(Dd-Rr2) F, + -DI__d + Rr2L)K]

D = r _ + (R - d) 2

5.4.2 Dynamic analysis

Let the angular displacement of the motor be given by 0 and the relative angle

between the arm and the motor be given by ct. That means, or is the measurement of the
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angular deflection of the arm. The sensed output is the angle (0 + cr ). The total inertia of

the motor is given by Jh_ and the total inertia of the arm is given by Jto_a.

Equations of motion

The kinetic and potential energies of the system are given by:

pE,v r 1= -_K_rFa 2

= 1 j,,,bO 2 (5.3)KEh_

1j
KEtoa ='_ k,,_(O +60 2

The total kinetic and potential energies are:

T = KE^_ + KElo a (5.4)

V = PE_v r

The Lagrangian of the system then becomes:

L= T-V = KEh_ + KEt, a -PE,p, (5.5)

The equations of motion using Lagrangian formulation are given by:

3 3L 3L
-0

3t 3a 3o_ (5.6)
3 3L 3L

=T
3t 30 30

Substituting for L from (4.5), yields:

(Yh_ + Ya,,a )0" + Yl,,,,a_ = T (5.7)

J io,,ag2+ J to_aO"+ K snrFO_ = 0

The governing equation relating electrical and mechanical variables are given by:

V = IR,, +K'og" = IR+K'Kto9 (5.8)

V K'K t
where o2,, = K_og, I = o2

R R
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and,

T = K_T,. = KgK,.I -

2

K,. K t V K_ K I co (5.9)
R R

Substituting for T and solving for the accelerations, we obtain the state space

representation as follows:

S( = AX + Bu

y = CX +Du

where,

and,

A

0 0 1 O"

0 0 0 1
2 2

0 K_FF K,,K t 0

J h.b RJ h.b
2 2

0 Ksrtrr (Jto_ + Jh.b ) K,. K t 0

C=[1

O=[O]

J _ J Io_ RJ _

1 0 0]

B

0

0

K,.K t

RJ h_o

K,.K t

RJ_

There are different possible positions of the anchor points on the arm and the

body. The model of the system could be initialized by some default position. For our

case, the anchor position [A, 3] was used which means there are two identical springs

(#2) connected between arm anchor #3 and body anchor #A. Also J_,,,a was selected to be

0.0059 kg -m 2 . The equivalent spring stiffness was found to be Ksr_rr = 1.61Nmlrad.

With this numerical data, the state-space matrices become:
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0 0

0 0

A= 0 765.12

0 - 1039.48

0

0
B=

99.25

- 99.25

C=[1 1 0 01

o=[o1

i]0

- 53.02

53.02

Figure 5.14 shows locations of poles and zeros of the system and the unit step

response of the open-loop and closed-loop system in simulation. Fig 5.15 shows the

system's real time step response using the same open-loop configuration.
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Fig 5.14 Poles-zeros map & open-loop step response
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Fig 5.15 Real-time step response

5.5 Experimental set-up and def'mition of control problems

For testing the closed loop system with an NGPC controller, the performance

criteria needs to be established. In this case, the classical criteria such as maximum

overshoot ( M e) and steady-state error (e,,) are used. They are defined as:

M e = (max y(t) - y,,) x 100%
!

=ll- y,,l×lOO%

where y,, is the steady-state value of the output.

After defining the performance criteria, the type of the test signal (or input signal)

is chosen. In order to test the closed-loop system with an NGPC controller, two test

signal sequence were considered:
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1. A unit step input: A step input equivalent to the angular displacement of 1 radian was

used to test the system's rest to rest maneuver;

2. A reduced gap square wave input: A square wave with the magnitude of + 1 radian

was applied to test the system's tracking performance

The next step was to obtain a discrete-time representation of the system to embed

the nominal system model into the neural network. The choice of sampling frequency is

typically governed by the dominant time constants in the system and the stability

considerations. In the subject example, 20 Hz was adequate for discretization. Having

obtained a discretized model of the system, it was embedded into neural network by

appropriately assigning the weights to the input layer connections using coefficients in

the discretized model of system's transfer function. (See Fig 4.2)

ff the plant model has uncertainty, online adaptation part of the neural network

can be activated as shown in Fig 4.2. In addition to refining the plant model through

online learning for better prediction, GPC tuning parameters can also be adjusted for

achieving robustness to model uncertainty and disturbances.

In this example, parametric uncertainty were incorporated in two different ways:

(1) by changing the spring stiffness, and (2) by changing the link inertia. Following are

three different cases for which NGPC controller was tested.

Case (a) Plant with uncertainty in spring stiffness: This was achieved by

changing anchor points for the springs. The estimated change in the stiffness value was

from 368 N/m to 665 N/m, i.e., the percentage change of 81%;
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Case (b) Plant with uncertainty in link inertia: This was achieved by adding

additional weight at the end of the link. The change in inertia value was from

0.0059 Nm 2 to 0.0021 Nm 2 , i.e., the percentage change of 64%;

Case (c) Plant with simultaneous uncertainties in spring stiffness and link

inertia: This case is a combination of case (a) and case (b) occurring simultaneously.

The parametric uncertainties in cases (a), (b) and (c) can translate into

uncertainties in natural frequency of the system. The nominal value of the frequency is

2.91Hz. The perturbed values of frequency for cases (a), (b) and (c) are: 4.9Hz, 3.62Hz

and 5.94Hz, respectively. These are equivalent to percentage changes of +69%, +25%

and +104%, respectively.

For experimental verification, the parameters for NGPC control knobs were set to

the values consistent with the results of Theorem 4.2. The corresponding settings of

NGPC tuning parameters was as follows:

N,=4, N_=7, N,=4, and )1.=0.05

5.6 Real-time experiment results

For experimental validation, two different test inputs were used. The first test

input was a unit step input which translates to a re-orientation command for the slewing

link. The second test input was chosen to be a doublet, particularly to test the tracking

ability of the controller in both directions.

For the first test input, i.e., the unit-step, three different experiments were

conducted: (1) with embedded model same as the plant without any known uncertainty in

the plant (Fig 5.16); (2) with embedded model being nominal plant model and the actual
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plant hasuncertainty(casec) with no online adaptation(Fig 5.17); (3) with embedded

modelbeingnominalplant modelwith onlineadaptationon (Fig 5.18);

Forthesecondtest input, following differentexperimentswereconducted:

Exp. l: ExactEmbeddedModel (Fig 5.19);

Exp. 2: Uncertainty (case (a)), without online adaptation (Fig 5.20);

Exp. 3: Uncertainty (case (a)), with online adaptation (Fig 5.21);

Exp. 4: Uncertainty (case (b)), without online adaptation (Fig 5.22);

Exp. 5: Uncertainty (case (b)), with online adaptation (Fig 5.23);

Exp. 6: Uncertainty (case (c)), without online adaptation (Fig 5.24);

Exp. 7: Uncertainty (case (c)), with online adaptation (Fig 5.25);
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Fig 5.20 Tracking performance: +69% uncertainty, without online adaptation
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Fig 5.22 Tracking performance: +25% uncertainty, without online adaptation
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Fig 5.24 Tracking performance: +104% uncertainty, without online adaptation
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Fig 5.25 Tracking performance: +104% uncertainty, with online adaptation

In all of the above experiments, NGPC tuning parameters were fixed. As

discussed in Section 2.1, one of the attractive features of GPC is that the GPC's

parameters can be tuned to improve performance. The following experimental results

demonstrate this feature of GPC. The results are given in Fig 5.25, where effect of tuning

parameters, N 2 ,is given on the system performance.
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5.7 Observations

In this section, some observations are given based on the series of experiments

conducted to validate robustness of GPC and use of NGPC in the control of uncertain

systems.

A slewing link with flexible joint was used as a proof-of-concept apparatus for

experimental validation. The objective was to control the rotation of the link in the

presence of parametric uncertainty under two different test inputs. The test inputs used

were unit-step and doublet. For all the experiments, the tuning parameters for GPC were

set at the minimum value required for ensuring stability of the closed-loop system.

As seen in Fig 5.15 through 5.17, the unit-step response first deteriorates when

uncertainty is introduced but improves again when online adaptation is turned on. The

stability of closed-loop system, however, is maintained in all the cases since it is ensured

by the choice of GPC tuning parameters.

In the second set of experiments, a doublet was used as reference signal in order

to test the robustness of NGPC in tracking. Again, figures from Fig 5.18 through 5.24

show that the stability of NGPC is maintained in all cases and online adaptation greatly

enhances the performance as before.

The effect of varying parameter N 2 (prediction horizon) on performance was also

studied and from the results shown in Fig 5.25 following observations can be made:

1. The overshoot of the system is improved (i.e., reduced) with increase in N_ ;

2. The steady state error of the system is also improved (decreased) with higher

values of N 2 . The only exception was the case when N_ = N_ = I. This could
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be attributed to the fact that this value of N I and N, is not sufficient to

,

account for the system's delay;

After certain value of N 2 (greater than 10), there is no significant change in

the performance.

In order to reinforce the choice of tuning parameters, the system was tested with

two more test signals: a sinusoidal input and a square wave input with changing

amplitude. Also, the uncertainty level was selected to be +104% for experimental

validation. The results of these experiments are given in Fig 5.27 and Fig 5.28. In both

cases, online adaptation was turned on.
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Fig 5.27 System response: +104% uncertainty, with online adaptation
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Fig 5.28 System response: +104% uncertainty, with online adaptation

Fig 5.27 and Fig 5.28 shows that NGPC can handle inputs with changing

frequency as well as amplitudes.

The robustness of GPC controller and online adaptation of neural network are two

most important features of NGPC architectures.
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5.8 Nonlinear mass-spring-damper system

In the previous section, it was shown that the NGPC architecture can be used

effectively for the control of uncertain linear systems. In particular, for the case of large

parametric uncertainty, it was shown, using simulations as well as experiments, that

NGPC can archive stability robustness with desirable performance in the presence of

such uncertainty. In this section, it will be shown that NGPC can be used in the control

of nonlinear systems with uncertainty. In the case of nonlinear systems, NGPC has

distinct advantage over other methods due to the learning and approximation capabilities

of neural network models used for output predictions. A numerical example is given in

this section to demonstrate the use of NGPC in the control of nonlinear system. The

nonlinear system used is the well-known Duffing equation:

:_+2X+X+fX 3 =u (5.10)

In Eq. (5.10), the nonlinearity arises from the nonlinear stiffness of the spring and

is reflected in the term 5x 3 . For the purpose of robustness analysis, it is assumed that

the stiffness of the nonlinear spring has uncertainty, i.e., coefficient of x 3 term in Eq.

(5.10) is unknown. The design model (nominal model) is assumed to be given by the

following approximation of the actual model:

X +)_+X+2.5X 3 =u (5.11)

In order to control this plant using NGPC, a linear embedded model is used to

initialize the network. It can be obtained by using the linear terms in the 'Best Known'

model as:

x+X+X =u (5.12)
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The control problem that is addressed here to obtain a robust tracking control for

the plant (5.10) given the best estimate of the plant model by Eq.(5.11).

There are several types of controller architectures that can be used to accomplish

the objection defined above. Different architectures yield different performance. For the

purpose of analysis following methodology was used. The neural network in NGPC set-

up was used either in 'pre-train' mode or 'no-train' mode. In both cases, the option of

on-line adaptation can be used if desired. The combinations of training options and on-

line adaptations options give rise to the following four different cases for simulation. (In

the case of pre-training the neural network is trained off-line using input-output data set

obtained from actual plant model and using nominal plant (design) model as initial

configuration)

Case 1) No pre-training, no online adaptation (Shown in Fig 5.29)

Case 2) Using pre-training, no online adaptation (Shown in Fig 5.30)

Case 3) No pre-training, but using online adaptation (Shown in Fig 5.31)

Case 4) Using pre-training and online adaptation (Shown in Fig 5.32)

The following figures show the testing results of above control structure:
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Fig 5.29 No pre-training, no online adaptation
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Fig 5.31 No pre-training, but using online adaptation
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Fig 5.32 Using pre-training and online adaptation

As it can be seen from the responses, on-line adaptation gives better tracking than

no adaptation. Also, as expected, pre-trained model gives better tracking performance

than no pre-training. The best results are obtained when on-line adaptation is used along

with pre-trained network.

In summary, this example has demonstrated that NGPC can be used effectively to

obtain robust control of nonlinear systems. The choice of GPC tuning parameters for

nonlinear systems still remains to be a subject of research.
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CHAPTER 6 Conclusions

This chapter is devoted to summarize the results of the research work reported in

this thesis. The objective of the research was to obtain robustly stabilizing controllers and

controller architectures for the control of uncertain linear and nonlinear systems. The

controllers presented in this work are Generalized Predictive Controllers (GPC) and

Neural Generalized Predictive Controllers (NGPC) both of which belong to a class of

model-based controllers. The work presented here involved analysis and synthesis of

controller architectures for real-time control of proof-of-concept laboratory apparatus and

several numerical examples. An experimental example and several numerical examples

were used to demonstrate the control methodology developed in this thesis. Given below

is the chapter-vise summary of the work presented in this thesis.

In Chapter 2, the basic framework of GPC was presented along with a brief

introduction of GPC and some remarks on their comparison with Linear Quadratic (LQ)

controllers. It was shown that GPC controllers belong to a class of model-based

controllers, namely, Receding Horizon Controllers (RHC). GPC was shown to be a

dynamic version of RHC. Since RHC paradigm parallels very close to LQ paradigm, a

comparison between LQ and RHC controllers was given to point out the differences

between the two. It was shown that RHC has numerous advantages over its LQ

counterparts. It was also shown that the disadvantages arising owing to the model-based

control strategies are minimized by the use of "receding horizon principle". GPC, being a

special case of RHC, inherits the basic robustness characteristics of RHC and offers

additional benefits due to its own architecture. The basic derivation of GPC control law

for LTI systems with known plant model was also given.
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The third chapter gave the review of neural networks and presented some of their

potential applications in the control system design. In particular, it was shown that how

neural networks can be used as estimators or predictors in the control system

applications. In GPC framework, neural networks find their use for system modeling. It

was shown that the tapped-delay architecture of neural networks allows them to model

dynamic systems. A procedure to train neural network as dynamic plant estimator was

also given.

In Chapter 4, description of integration of neural network into GPC framework to

yield NGPC architecture was given. The controller block diagram for NGPC was also

given. The cost function minimization algorithm used in NGPC framework was

described. The methodology to use neural network for modeling and prediction in the

control of linear and nonlinear uncertain systems was given. The conditions for the closed

loop stability were presented. The rules-of-thumb for tuning the NGPC parameters in

order to improve system performance were given based on the empirical studies.

The analytical results and control methodology presented in Chapter 2-4 as

validated by using several numerical examples and real-time control experiments. The

numerical examples include pitch-rate control system for an F-16 fighter aircraft and

nonlinear spring-mass-damper system. An experimental validation was performed using

real-life hardware system consisting of slewing link with flexible joint. It was shown

numerically as well as experimentally that NGPC, which combines GPC and neural

network, can be used successfully in robust tracking problems. It was demonstrated that

by choosing NGPC tuning parameters to satisfy stability constraints and using on-line
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learningcapabilityof neuralnetworks,robustcontrol with acceptableperformancecanbe

achievedfor linearaswell asnonlinearsystems.

In summary, it was shown that NGPC offers a great potential for the robust

control of uncertain linear and nonlinear systems. In particular, for nonlinear systems

very few tools are available in the area of robust control and NGPC seems to be a

promising candidate for these applications. Also, with advances in computer technology,

the computational overhead in predictive control-based methodology is not a major

concern. However, much research needs to be done in the theoretical aspects of the

NGPC methodology. In particular, in the case of nonlinear systems most of the results are

empirical in nature and much more work is required before strong analytical foundation

can be established. In spite of these drawbacks NGPC methodology seems to be an

attractive viable option for robust control for years to come. This makes NGPC valuable

tool for robust control.

Further research in this area should focus on analytical aspects of NGPC. For

example, stability of NGPC with neural network trained either off-line or on-line is an

open and challenging problem. The existing mathematical tolls are not adequate to prove

stability of such systems in a rigorous manner. Further research is necessary to establish a

mathematical framework for addressing robustness issues related to stability as well as

performance.
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